
Digital Object Identifier (DOI) 10.1007/s10107-002-0358-2

Math. Program., Ser. A 94: 71–90 (2002)

François Margot

Pruning by isomorphism in branch-and-cut

Received: August 2001 / Accepted: October 2002
Publication online: December 9, 2002 – © Springer-Verlag 2002

Abstract. The paper presents a branch-and-cut for solving (0, 1) integer linear programs having a large
symmetry group. The group is used for pruning the enumeration tree and for generating cuts. The cuts are
non-standard, cutting integer feasible solutions but leaving the optimal value of the problem unchanged. Prun-
ing and cut generation are performed by backtracking procedures using a Schreier-Sims table for representing
the group. Applications to hard set covering problems and to the generation of covering designs and error
correcting codes are presented.

Key words. branch-and-cut – isomorphism pruning – symmetry

1. Introduction

Let �n be the set of all permutations of the ground set In = {1, . . . , n}. A permutation
in �n is represented by an n-vector π , with π [i] being the image of i under π . If v is
an n-vector and π ∈ �n, let w = π(v) denote the vector w obtained by permuting the
coordinates of v according to π , i.e.

w[π [i]] = v[i] for all i ∈ In.

We consider an ILP problem of the form

min cT · x
s.t. Ax ≥ b, (1)

x ∈ {0, 1}n ,

where A is an m× n matrix. For a permutation π of the n variables such that π(c) = c

and a permutation σ of the m rows of A such that σ(b) = b, let A(π, σ) be the matrix
obtained from A by permuting its columns according to π and its rows according to σ .
Let

G = {π | there exists σ s.t. A(π, σ) = A} .
Clearly, G is a permutation group of In. Moreover, for π ∈ G, a point x̄ is feasible

(resp. optimal) for the linear relaxation of the ILP (1) if and only if π(x̄) is feasible (resp.
optimal) for that ILP. Hence, G is a symmetry group of the feasible (and of the optimal)
set of the ILP.

F. Margot: Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027,
e-mail: fmargot@ms.uky.edu

72 François Margot

ILPs with large symmetry groups occur naturally when formulating classical prob-
lems in combinatorics, for example problems looking for a family of subsets of a given
set E with specified properties. In most cases, the elements in E are indistinguishable
and G is a group with order at least |E|!. The problem of scheduling jobs on p par-
allel identical machines also yields ILPs with a natural symmetry group with at least
p! elements. For relatively modest size problems, it turns out that the corresponding
ILPs become very difficult (if not impossible) to solve by traditional branch-and-cut
techniques. The trouble comes from the fact that many subproblems in the enumeration
tree will be isomorphic, forcing a wasteful duplication of effort.

In this paper, we assume that an ILP together with its symmetry groupG is given. We
show how to use G in order to efficiently prune isomorphic subproblems and to help the
search by generating isomorphism cuts (cutting integer feasible solutions, but leaving
the value of the optimal solution unchanged). This isomorphism pruning is compatible
with standard cut generation techniques (Gomory cuts, Lift-and-Project cuts, or special-
ly designed cuts for the problem at hand). The price to pay for the pruning is that the
branching variable can no longer be chosen arbitrarily. We also assume that the reader
is familiar with the branch-and-cut procedure, as excellent introductions can be found
in [33], [37], [38].

While isomorphism rejection in backtracking searches has been used in many appli-
cations [4], [6], [7], [14], [17], [20], [21], [22], [23], [29], [34], [35], it is not commonly
used in a branch-and-cut context. In most instances, the symmetry group G is not as-
sumed to be known and the backtracking search has the additional task to produce it. The
originality of the proposed approach resides essentially in (i) the possibility of generating
isomorphism cuts (that will be shown to be efficient for the covering design problem),
and (ii) the development of algorithms for computing orbits and stabilizers of sets under
a group, taking advantage of the type of stabilizers and points in the queries needed by
the branch-and-cut.

Section 2 describes the pruning algorithm, and Section 3 presents basic data struc-
tures and algorithms for group operations. Section 4 describes the restrictions that can be
put on queries for orbits and stabilizers generated during the branch-and-cut. Section 5
introduces the isomorphism cuts. Finally, Section 6 presents results on three applications:
set covering problems, covering designs and error correcting codes.

We close this section with two basic definitions and some notation:
Let S ⊆ In. To simplify the notation, we use a set S and its characteristic vector

interchangeably.
The orbit of S under G is

orb(S,G) = {S′ ⊆ In | S′ = g(S) for g ∈ G} .
The stabilizer of S in G is the subgroup of G given by:

stab(S,G) = {g ∈ G | g(S) = S} .
For 1 ≤ a ≤ b ≤ n, we write v[a..b] to denote the entries {v[a], v[a+1], . . . , v[b]}

of v as an unordered set.
If g1, . . . , gk are k permutations of In, the permutation g = g1 · . . . · gk is obtained

by applying the permutations from right to left, i.e g(v) = g1(g2(. . . (gk(v)) . . .)) for
any n-vector v.

Pruning by isomorphism in branch-and-cut 73

2. Isomorphism test, pruning, and fixing

The proposed branch-and-cut will branch by fixing the value of one variable xj to 0 or 1.
Since the ILP (1) has a large automorphism group G, it is very likely that several nodes
in the enumeration tree will correspond to isomorphic problems. Obviously, solving one
of these isomorphic problems and pruning the others would result in huge savings. One
important goal is to do so without having to keep in memory the list of all non-iso-
morphic subproblems encountered since the start of the algorithm. One way to achieve
this is to define, for each isomorphism class of subproblems, one particular subproblem
(called the representative of the class) that will be solved. Given a subproblem, we then
need only to be able to decide if it is a representative or not. If it is not, we can prune
the corresponding node of the branch-and-cut. Some care must be taken to ensure that
the representative subproblems form a subtree of the branch-and-cut tree including the
root. The general approach of isomorphism free generation of combinatorial structures
based on representatives was studied by Read [34]. A general theory for isomorphism
free generation, developed by McKay, can be found in [29].

We distinguish fixed variables from set variables: branching decisions fix variables
whereas logical implications or other tests set variables. We will use only one operation,
called 0-setting, to set variables to 0. It is important to realize that the results below may
not hold if additional setting operations are used. Let a be a node of the branch-and-cut
enumeration tree. Let Fa

1 (resp. Fa
0) be the set of indices of variables fixed to 1 (resp.

fixed to 0) at a. Let FSa0 be the set of indices of variables fixed or set to 0 at a. Let Fa

be the set of indices of variables that are not in Fa
1 ∪FSa0 , variables also called free at a.

Let b be another node and let Fb
1 , F

b
0 be the corresponding set of indices of variables at

b. The subproblems associated with nodes a and b of the branch-and-cut are isomorphic
if there exists a permutation g ∈ G, such that g(F a

i) = Fb
i for i = 0, 1.

Unfortunately, using this isomorphism test to identify subproblems that can be pruned
during the branch-and-cut would require the storage of a maximal set of non-isomorphic
subproblems generated so far in the enumeration. Moreover, the computation needed to
determine if g exists is not trivial and would be required for many pairs of subproblems.
Using the definition of a representative, we can use a slight relaxation of the isomor-
phism test that turns out to be practical. The price to pay for the simplification is that
we will no longer be free to branch on any variable of the ILP: at node a, the branching
variable will have to be xf where f is the minimum index in Fa (even if the value of
xf in the current solution of the LP relaxation is 0 or 1). The variable xf is called the
branching variable at a. This branching strategy is called minimum index branching
(MIB). The enumeration tree generated by a branch-and-bound B using the LP relax-
ation of (1) to prune only infeasible subproblems is called the full enumeration tree of
B. By convention, the full enumeration tree only contains nodes that are not pruned.

Let S �= T be two subsets of In. Let S[j] (resp. T[j]) denote the j th smallest element
in S (resp. T). Then S is lexicographically smaller than T if there exists k ∈ {1, . . . , |S|}
with k < |T | such that S[j] = T[j] for j = 1, . . . , k and either |S| = k or S[k+1] <

T[k+1]. We write S � T if S is equal to T or if S is lexicographically smaller than T .
A set S ⊆ In is a representative if S is lexicographically minimum among the sets

in its orbit under G, i.e.
S � g(S) ∀ g ∈ G.

74 François Margot

The following property is crucial for the validity of the pruning:

Lemma 1. Let S ⊆ In be a representative underG. Let S′ := S−v with v = max {w ∈
S}. Then S′ is also a representative.

Proof. If S′ is not a representative, then there exists g ∈ G such that g(S′) � S′. Then
g(S) � S, a contradiction. ��

Consider the following isomorphism pruning (IP) to be applied on nodes of the
enumeration tree of a branch-and-cut: if Fa

1 is not a representative, then prune node a.

Lemma 2. Let τ be the full enumeration tree of a branch-and-cut B using MIB. Let S
be the nodes in τ that are not pruned by IP. Then

(i) S induces a subtree of τ containing the root of τ ;
(ii) The branch-and-cut B′ obtained by adding IP to B returns the same optimal value

as B.

Proof. (i): Let a ∈ S and let b ∈ τ on the path between the root and a in τ . Then Fa
1 is a

representative and, by the choice of branching strategy, Fb
1 is the set of the |Fb

1 | smallest
entries in Fa

1 . By Lemma 1, Fb
1 is a representative, i.e. b ∈ S.

(ii): Let a be a node of τ for which Fa
1 is an optimal solution to ILP (1). Then the

representative of the orbit of Fa
1 under G is a set F ∗, and thus there is a node b ∈ S

with Fb
1 = F ∗. By (i), the full enumeration tree of B′ is the subtree induced by S in τ .

This implies that B′ will process node b at some point, yielding the same optimal value
as the one returned by B. ��

When solving a subproblem a, it is sometimes possible to identify variables that may
be set to 0 without affecting the optimal solution returned by a branch-and-cut using
MIB and IP. Consider the following operations:

(i) Let b be the father of a in the enumeration tree and let xf be the branching variable
at b. If a is the son of b where xf is fixed to 0 then set to 0 all free variables in
orb(f, stab(F a

1 ,G)).
(ii) Let f = min {r ∈ Fa}. If Fa

1 ∪ f is not a representative, then set to 0 all free
variables in orb(f, stab(F a

1 ,G)).

Applying these operations (repeatedly for (ii) if possible, i.e. until no free variable
exists or until Fa

1 ∪ f is a representative) is called performing a 0-setting. The output of
the 0-setting is the value f in (ii) for which Fa

1 ∪ f is a representative, or n + 1 is no
such f exists.

Remark 1. Trivially, the variables set to 0 during a 0-setting at node a all have a larger
index than the maximum index M in Fa

1 , since each variable in Fa has a larger index
than M . ��
Lemma 3. Consider a branch-and-cut B using MIB and IP, and let B′ be the branch-
and-cut obtained by adding 0-setting in B. Then the optimal values returned by B and
B′ are equal.

Pruning by isomorphism in branch-and-cut 75

Proof. Let a be a node of the full enumeration tree τ of B for which Fa
1 is an opti-

mal solution to ILP (1). Then Fa
1 is a representative. Assume that no node b in the full

enumeration tree τ ′ of B′ has Fb
1 = Fa

1 . Hence there exists a node c ∈ τ ′ such that
Fc

1 contains the |Fc
1 | smallest indices in Fa

1 and, during the 0-setting at c, one of the
variables in Fa

1 − Fc
1 is set to 0. Assuming that c is chosen as close as possible to the

root, we then have j ∈ orb(f, stab(F c
1 ,G)) for some j ∈ Fa

1 − Fc
1 and f ∈ Fc

0 with

max{r ∈ Fc
1 } < f < m := min{r ∈ (F a

1 − Fc
1)} ≤ j .

The first inequality comes from Remark 1 and the second one from the fact that Fc
1 ∪m

is a representative: If m is set to 0 during the 0-setting at c, then it is from a f < m, and
if m is not set to 0, then all f considered during the 0-setting are smaller than m.

Thus there exists g ∈ stab(F c
1 ,G) such that g[j] = f . Then g(F c

1 ∪ j) = Fc
1 ∪ f

which is lexicographically smaller than Fc
1 ∪m, proving that Fa

1 is not a representative
as Fc

1 ∪ j ⊆ Fa
1 , a contradiction. ��

It remains to show how to compute orb(f, stab(F a
1 ,G)) and how to test if a set is

a representative or not. This will be covered in Section 4. In the remainder of the paper,
the branch-and-cut is assumed to use MIB, IP and 0-setting. The operations performed
at node a in the enumeration tree are thus:

r := 0-setting(a);
Repeat until a criterion is met

solve the LP relaxation;
generate cuts;

If r < n + 1 then create two sons of a by fixing xr to 0 or 1;

3. Group representation and basic algorithms

Essentially two options are available to represent a permutation group G: the explic-
it representation or a representation by generators. The explicit representation simply
stores in a list each permutation in G. A representation by generators stores only a sub-
set {g1, . . . , gk} of the permutations in G, with the property that any permutation in G

can be written as a product of permutations in the subset. If |G| is small, the explicit
representation might work well, but in most cases of interest a representation by gener-
ators is required. The operations of interest listed above are also, usually, faster with the
representation by generators.

We use the Schreier-Sims representation of G (also called strong generators) [4],
[5], [6], [7], [16], [20], [21], [22]. (A good introduction can be found in [20].) Let

G0 = G

G1 = {g ∈ G0 | g[1] = 1}
G2 = {g ∈ G1 | g[2] = 2} (2)

. . .

Gn = {g ∈ Gn−1 | g[n] = n} .
G1 is simply the stabilizer of 1 in G, and Gi is the stabilizer of i in Gi−1. It follows

that G0,G1, . . . ,Gn are nested subgroups of G.

76 François Margot

Example 1. Consider the group G of symmetries of the 2 × 2 square, with one variable
associated with each square as indicated below:

3 4
1 2

G = G0 comprises 8 permutations: the identity I = [1, 2, 3, 4]T , three rotations
R90 = [2, 4, 1, 3]T , R180 = [4, 3, 2, 1]T , R270 = [3, 1, 4, 2]T , the vertical sym-
metry V = [2, 1, 4, 3]T , the horizontal symmetry H = [3, 4, 1, 2]T , the symmetry
along the main diagonal M = [4, 2, 3, 1]T , and the symmetry along the other diagonal
D = [1, 3, 2, 4]T . Then G1 = {I,D}, and G2 = G3 = G4 = {I }. ��

For k = 1, . . . , n, let orb(k,Gk−1) = {j1, . . . , jp} be the orbit of k under Gk−1.
Then for each 1 ≤ i ≤ p, let hk,ji be a permutation in Gk−1 sending k on ji , i.e.
hk,ji [k] = ji . Let Uk = {hk,j1 , . . . , hk,jp }. Note that Uk is never empty as orb(k,Gk−1)

always contains k.
Arrange the permutations in the sets Uk , k = 1, . . . , n in an n × n table T , with

Tk,j =
{
hk,j if j ∈ orb(k,Gk−1),

∅ otherwise.

The table T is called the Schreier-Sims representation of G. This table is not unique-
ly defined, as there is usually a choice for the permutations included in the sets Uk .
However, the general shape of the table (i.e. which entries are empty or not) is fixed.

Example 2. For the group G of Example 3.1, we have orb(1,G0) = {1, 2, 3, 4},
orb(2,G1) = {2, 3} orb(3,G2) = {3}, and orb(4,G3) = {4}. A Schreier-Sims repre-
sentation of G is then:

1 2 3 4

1 I V H R180
2 I D

3 I

4 I

��
Remark 2. It is more efficient to implement the table as a vector of ordered lists instead
of as a 2-dimensional table, as most entries in the table are usually empty. However,
algorithms are simpler to describe and understand for the 2-dimensional table. The ac-
tual implementation uses a vector of ordered lists. ��
Remark 3. The most interesting property of this representation of G is that each g ∈ G

can be uniquely written as

g = g1 · g2 · · · · · gn (3)

with gi ∈ Ui for i = 1, . . . n. Hence the permutations in the table form a set of generators
of G. It is called a strong set of generators, since the equation (3) shows that g ∈ G can
be expressed as a product of at most n permutations in the sets.

Pruning by isomorphism in branch-and-cut 77

Given a permutation g ∈ G, it is easy to find the n permutations g1, . . . , gn of equa-
tion (3): the permutations g2, . . . , gn all stabilize point 1, forcing g1 to be T [1, g[1]].
Then, as g3, . . . , gn all stabilize point 2, we must have (g1 · g2)[2] = g[2], i.e. g2[2] =
(g−1

1 · g)[2] and thus g2 = T [2, (g−1
1 · g)[2]]. A similar reasoning yields g3, . . . , gn.

��

It is possible to make a small generalization of the presentation by ordering the points
of the ground set in an arbitrary order β, called the base of the table. In that case, the
subgroups G(β)k for k = 1, . . . , n are defined as the stabilizer of β[k] in G(β)k−1, with
G(β)0 = G. The corresponding table is denoted by T (β). Row k of T (β) corresponds
to the element k, U(β)k is the set of non-empty entries in row k of T (β) and J (β)k
denotes the set of indices {j ∈ In | T (β)[k, j] �= ∅}, also called the basic orbit of k in
T , following the terminology of [22]. When the base β is fixed, we sometimes drop the
qualifier (β) in these symbols, but from now on each table T is defined with respect to
a base.

Let an identity row be a row β[i] in table T (β) such that the only non-empty entry
in that row is entry T [β[i], β[i]] which is the identity permutation.

Remark 4. For any k ∈ {1, . . . , n}, replacing rows β[1], . . . , β[k − 1] in T (β) by iden-
tity rows yields a Schreier-Sims representation of G(β)k−1. Hence the permutations on
rows β[k], . . . , β[n] of T (β) form a set of generators of G(β)k−1. ��

Two natural questions arise: how can we create the table T (β), knowing the group
G either explicitly or by a family of generators, and how can we change the base β

of the representation? Algorithms for performing these operations can be found in [4],
[6], [7], [16], [20], [21], [22]. The implemented algorithm, build(), to create the table
is closest to [20] and uses two other routines, test() and enter(). The parameter f irst
of these procedures always has value 1 and could thus be removed. However, the base
change algorithm down() given below calls enter() with f irst > 1. The algorithms
given in this section are not the most efficient in terms of worst case complexity or space
requirements, but their simplicity and satisfactory empirical efficiency motivate their
selection.

test(T , β, p, f irst)

/* Returns the smallest i such that the row T [β[i]] is modified if permutationp
is added to the generators of the group represented by T (β) or returns (n+ 1)
if T (β) is not changed; p is passed by reference. */

For i = f irst to n do
h := T [β[i], p[β[i]]];
If h �= ∅ then
If h �= identity then p := h−1 · p;

else return(i);
return(n + 1);

78 François Margot

enter(T , β, p, f irst)

/* Add permutation p to the generators of the group represented by T (β); T
is passed by reference. */

i := test(T , β, p, f irst);
If i = n + 1 then return
else

T [β[i], p[β[i]]] := p;
For j = f irst to i do
For k = 1 to n do
h := T [β[j], k];
If h �= ∅ and h �= identity then
q := p · h;
enter(T , β, q, f irst);

For j = i to n do
For k = 1 to n do
h := T [β[j], k];
If h �= ∅ and h �= identity then
q := h · p;
enter(T , β, q, f irst);

build(T , β,P)
/* Build the table T (β) for the group generated by the permutations in P; T
is passed by reference. */

Set all rows of T (β) to identity rows;
For each p ∈ P do

enter(T , β, p, 1);

Proposition 1. The algorithms test(), enter() and build() are correct.

Proof. As f irst = 1 in the call enter(n, T , β, p, f irst) in build(), we get essentially
the algorithms Test2(), Enter2() and Gen() of [20] (see also Algorithm 2 and 3 in Chapter
II of [16]) where the proof of correctness can be found (Theorem 6.8 in [20]). ��
Remark 5. The complexity of one call to test() is in O(n2). The number of operations in
one call to enter() is bounded as follows: O(n2) for one call to test(), and, if test() does
not return n+1, O(n2) operations to run across the table plus, for each non-empty entry
in the table O(n) operations and one recursive call. Each time test() returns a number
other than n+ 1, one additional entry in the table is filled. Thus test() returns a number
other than n+ 1 at most O(n2) times and the total number of recursive calls to enter() is
in O(n4). It follows that the complexity of enter() is in O(n6). A similar analysis shows
that the complexity of build() is in O(n6 + n2 · |P|). Faster algorithms for computing a
representation of a group exist [2], [18], [36]. The complexity of the algorithm of Jerrum
[18] is in O(n5 +n2|P|) and the one of Babai et al. [2] is in O(n4 logc n+n2|P|) where

Pruning by isomorphism in branch-and-cut 79

c is a constant. Since we might assume that the permutation group is given by a set of
strong generators, the speed of the algorithm for finding the representation of the group
is not particularly relevant to this work. However, the fact that the representations found
by these algorithms require O(n2) space instead of O(n3) for the above algorithm could
be of interest for applications where the Schreier-Sims table has close to n2/2 non-empty
entries. ��

Given a table T (β), a simple algorithm to change the base to β ′ is to use build
(n, T ′, β ′,P) where T ′ is a new table and P is the set of non-empty entries in T . As the
non-empty entries in T form a set of generators of the group, the resulting table T ′(β ′) is
the wanted representation of the group. However, this procedure does not take advantage
of the similarities between T and T ′ when β and β ′ are almost identical, as is the case
for the base changes needed during the branch-and-cut: let T (β) be the table at a node
of the enumeration tree. As we will see in Section 4, the base β ′ for any of its sons can
be obtained through a few applications of the following operation (called downing of a
point v): assume that v = β[r] and let r ≤ s ≤ n. Let β ′ be the permutation obtained
from β by moving the entry v to position s of β ′, keeping the other entries in the same
order as in β. The algorithm down() computes the table T (β ′) efficiently. It is similar to
an algorithm in [7] used to swap two adjacent entries in β.

down(T , β, r, s)

/* Down the pointβ[r] at position s ≥ r; both T andβ are passed by reference.
*/

P := non-empty entries on row T [β[r]];
Set row T [β[r]] to the identity row;
t := β[r];
For i = r + 1 to s do

β[i − 1] = β[i];
β[s] := t;
For each p ∈ P do

enter(T , β, p, r);

Proposition 2. The algorithm down() is correct.

Proof. Let T ′ and β ′ be the table and the base obtained after the call to down(). Let T r be
the table obtained from T by replacing rows β[1..r] by identity rows. Let G0 = G and
let Gi be the subgroup of all permutations in G stabilizing each of the points β[1..i] for
i = 1, . . . , n (c.f. (2)). Then T r(β) is a representation ofGr , as mentioned in Remark 4,
and T r(β ′) is also a representation of Gr as the only difference between the two repre-
sentations is the position of an identity row. Notice that all calls to enter(T , β ′, p, f irst)
are done with parameter f irst = r , and that the same calls and operations would be
performed by calling enter(T r, β ′, p, 1). The latter returns a table representing the group
obtained from Gr by adding p to the list of its generators. It follows that after entering
all permutations in P , the resulting table T r ′(β ′) is a description of Gr−1. Since rows
β ′[r..n] of T r ′ and T ′ are identical, rows β ′[r..n] of T ′ are correct. Rows β ′[1..r − 1]

80 François Margot

of T ′ are identical to rows β[1..r − 1] of T and this is also correct as the basic orbits of
β ′[i] = β[i] in Gi−1 for i = 1, . . . , r − 1 are unchanged. ��

Remark 6. A crude analysis similar to the one in Remark 5 gives that the worst case
complexity of down() is in O(n3 +n4 · k), where k is the number of entries added to the
table by the calls to enter(). A similar algorithm for performing the inverse of downing
a point (an operation called a cyclic shift in [3]) has worst case complexity in O(n3).
It is not obvious if the same ideas would extend or not to the case of downing a point.
However, as O(n) applications of the cyclic shift algorithm are enough to down a point,
it is possible to down a point in O(n4). As down() is fast enough on the applications
given in Section 6 and as the algorithm for the cyclic shift is much more elaborate,
improvements for down() have not been explored. ��

An algorithm with worst case complexity in O(n6) or even O(n4) might seem
impractical for values of n ≥ 100. It turns out that the complexity bounds given in
Remarks 5 and 6 are very pessimistic. The amount of time spent in the four algorithms
described in this section during the branch-and-cut stays well below 5% of the total cpu
time in typical applications. For example, for the covering designs application described
in Section 6, n = 252, the group has order 10! = 3, 628, 800, but the number of entries
in the table is, on average, 550. Moreover, the distribution of the entries in the table
is heavily biased towards the rows corresponding to the first entries in the base: typi-
cally, the cardinality of the basic orbits are: |Uβ[0]| = 252, |Uβ[1]| = 25, |Uβ[2]| = 4,
|Uβ[3]| = 3, |Uβ[4]| = 2, |Uβ[5]| = 1, |Uβ[6]| = 4 and only two other basic orbits have
cardinality larger than 1 (namely 3 and 2). This motivates the use of the parameter f irst
in the algorithms test() and enter(): when f irst > 1 (i.e. except at nodes of the branch-
and-cut enumeration tree where no variable is fixed to 1), 251 of the 295 entries of the
table that are not identity permutations are ignored when looping through the table in
enter(). Since each permutation considered in the loop involves a multiplication of two
permutations and a call to test() (at a cost of 3(n)), this saves a substantial amount of
work. This is of course an empirical observation. The unsophisticated worst case com-
plexity analysis given above is unaffected. In any case, if the algorithms test(), enter()
and down() are not satisfactory in term of space requirements or in execution speed for
a particular application, it is possible to replace them by algorithms from [2], [3], [18]
based on the compressed data structure of [18].

4. Orbits, stabilizers and representatives

We are interested in performing the following operations that were mentioned in Sec-
tion 2: Computing the orbit of a point in the stabilizer of a set and deciding if a set is
lexicographically minimum in its orbit under G.

For the former, if the stabilizer G′ was given by a Schreier-Sims table, it would of
course be possible to make a change of basis so that v becomes the first entry of the
basis, since then non-empty entries in row v of the table will be the orbit of v under
G′. In our particular case, however, G′ is given implicitly and building the table for G′
would be quite expensive. (Finding generators of the stabilizer of a set under G is at

Pruning by isomorphism in branch-and-cut 81

least as hard as testing if two graphs are isomorphic [16], [24].) A faster algorithm can
be found in [5], [16] but it also relies on a Schreier-Sims description of G′.

We thus devised a backtracking algorithm for computing the orbit of a single point
in the stabilizer of a set in G. It takes advantage of the fact that we might assume that
the basis β of the group at node a of the enumeration tree has the following structure:
variables fixed to 1 at a (i.e. Fa

1) come first in β, then the free variables (Fa), and then
the variables fixed or set to 0 at a (FSa0).

The data structure associated with group G at node a of the branch-and-cut is the
following:

table: T base: β

integer: f ixed one vector: part zero .

The table T is just a Schreier-Sims representation of the group with base β. The
variable f ixed one gives the number of variables in Fa

1 and

Fa
1 = β[1..f ixed one] with β[1] < · · · < β[f ixed one] .

The vector part zero is used to store information about variables fixed or set to 0. For
ind = 1, . . . , f ixed one,β[part zero[ind]..n] are the variables that have been fixed or
set to 0 beforeβ[ind] was fixed to 1. For ind = f ixed one+1,β[part zero[ind]..n] =
FSa0 , i.e. all the variables currently fixed or set to 0 at a. The remaining variables (the
free ones) appear in β in increasing order of their index, after variables in Fa

1 and before
variables in Fa

0 . Note that this structure of β is easy to maintain throughout the branch-
and-cut: when the 0-setting is performed (or a variable is fixed to 0 by branching), free
variables in a set U are set to 0. To update the table, simply use down(), moving one by
one the variables in U . When a variable is fixed to 1 by branching, it is always the free
variable with smallest index, and the basis (and thus the table) remains the same.

In this section, we consider algorithms for solving questions related to a single node
a of the branch-and-cut. To avoid heavy notations, the table associated with a is denoted
by T , instead of the more precise a → T . The same remark applies to the three other
fields of the data structure associated with a.

The backtracking procedure given below computes the orbit of β[k] in the stabilizer
of the points in β[1..k−1]. Due to the particular structure of the base β, this is exactly the
operation of computing orb(f, stab(F a

1 ,G))with f = min {r ∈ Fa} needed in Section
2 if we use k = |Fa

1 |+1. It consists of an initializing procedure orbit in stabilizer() that
calls a recursive procedure orb in stab().

orbit in stabilizer(a, k)

/* Returns the orbit of β[k] in stab(β[1..(k − 1)],G) where G is the group
represented by T with base β */

Jk = basic orbit of β[k] in T ;
ident = identity permutation;
remain := β[1..k − 1];
orbit := Jk;
orb in stab(a, k, Jk, ident, remain, orbit, 1);
return(orbit);

82 François Margot

The parameters of the call to orb in stab() have the following interpretation: perm
is a permutation in G sending β[1..ind − 1] on a subset B ⊆ β[1..k − 1]; remain is
the set perm−1(β[1..k − 1] − B); Jk is the basic orbit of β[k] in T ; orbit is the set of
points currently known in the orbit of β[k] in stab(β[1..(k−1)],G); (orbit is passed by
reference during the recursive calls;) ind refers to the point β[ind] being treated during
the current call.

orb in stab(a, k, Jk, perm, remain, orbit, ind)

For each i ∈ remain do
h := T [β[ind], i];
If h �= ∅ then

loc remain := remain − i;
loc remain := h−1(loc remain);
loc perm := perm · h;
If ind < k − 1 then
orb in stab(a, k, Jk, loc perm, loc remain, orbit, ind + 1);

else
For each j ∈ Jk do orbit := orbit ∪ perm[j];

Proposition 3. The algorithm orbit in stabilizer() is correct.

Proof. Let S = β[1..(k − 1)]. If k = 1, stab(∅,G) = G and the orbit of β[1] in G is
J1, as returned by the algorithm. Otherwise, we have k ≥ 2. By Remark 3, stab(S,G)

is generated by all permutations g such that g(S) = S with

g = g1 · · · · · gk−1 · gk · h
and gi ∈ Uβ[i] for i = 1, . . . k, h ∈ Gk . Since h[β[k]] = β[k],

orb(β[k],stab(S,G)) =
{v ∈ In |v = (g1 · · · · · gk)[β[k]], gi ∈ Uβ[i] for i = 1, . . . k, g(S) = S} .

Assume that gi = T [β[i], ji] for i = 1, . . . , k − 1. The condition g(S) = S implies
j1 ∈ S. Moreover, if k ≥ 3 then (g1 ·g2)(β[2]) ∈ S−j1 and thus g2[β[2]] ∈ g−1

1 (S−j1).
In general, for index 2 ≤ ind ≤ k − 1, we have

gind(β[ind]) ∈ g−1
ind−1(. . . (g

−1
2 ((g−1

1 (S − j1)) − j2)) − · · · − jind−1) . (4)

Note that the set in (4) is exactly the parameter remain of the call to the procedure
orb in stab() with value ind as last parameter. That procedure simply selects an index in
this set, update perm and remain and calls itself recursively with ind + 1 until ind =
k−1 or no permutation h is found. In the former case, g1 · . . . ·gk−1(S) = perm(S) = S,
and it adds perm[j] for all j ∈ Jk . This amounts to computing (perm ·gk)[β[k]] for all
gk ∈ Uβ[k]. In the latter case, the algorithm backtracks to ind − 1, since no permutation
in G stabilizes S with the current choice of permutations g1, . . . , gind−1. Since at each
level in the recursion, all possible choices for gind are explored, and the algorithm indeed
returns the desired orbit. ��

Pruning by isomorphism in branch-and-cut 83

Remark 7. As observed in the justification above, the set in (4) is the current set remain.
A weaker statement about this set is that remain ⊆ perm−1(S), as

perm−1 = g−1
ind−1 · · · · · g−1

2 · g−1
1 .

��

Let us now turn to the question of deciding if set S = β[1..k] is the lexicographically
minimum set in orb(S,G). Note that for k = |Fa

1 |+ 1, this is exactly the same question
as deciding if Fa

1 ∪ f is a representative, with f = min {r ∈ Fa} mentioned in Section
2. We assume that β has the structure stated at the beginning of this section.

first in orbit(a, k)

/* Returns “true” if and only if β[1..k] is
lexicographically minimum in orb(β[1..k],G) */

ident := identity permutation;
remain := β[1..k];
is lexmin := true;
f in orb(a, k, ident, remain, 1, is lexmin);
return(is lexmin);

The parameters perm, remain and ind in the call to f in orb() are similar to the
same parameters in the call of orb in stab(). The parameter is lexmin is passed by
reference and is used to stop the procedure as soon as it is known that β[1..k] is not
lexicographically minimum in orb(β[1..k],G).

f in orb(a, k, perm, remain, ind, is lexmin)

If is lexmin = false then return;
For each i ∈ remain do

If β−1[i] ≥ part zero[ind] then
is lexmin := false;
return;

h := T [β[ind], i];
If h �= ∅ then
loc remain := remain − i;
loc remain := h−1(loc remain);
loc perm := perm · h;
If ind < k then
f in orb(a, k, loc perm, loc remain, ind + 1,

is lexmin);

Proposition 4. The algorithm first in orbit() is correct.

84 François Margot

Proof. Suppose that the condition

β−1[i] ≥ part zero[ind]

in procedure f in orb() is satisfied. This condition means that, for some t ≤ ind, there
exists a point i in remain that has been fixed or set to 0 before fixing β[t] to 1 and (if
t ≥ 2) after fixing β[t − 1] to 1. Let

S := perm(β[1..ind − 1]) ⊆ β[1..k] i.e. perm−1(S) = β[1..ind − 1] .

Moreover, as pointed out in Remark 7 (the algorithms are similar, so this remark holds
here too), remain ⊆ perm−1(β[1..k]) and since it is disjoint from S, we have

i = perm−1[β[s]] for some s ∈ {ind, . . . , k} .
Since i was fixed or set to 0 before fixing β[t] to 1, we have, for some w < β[t],

i ∈ orb(w, stab(β[1..t − 1],G)) .

Hence there exists a permutation

p ∈ stab(β[1..t − 1],G) with p(i) = w .

Let S′ := perm(β[1..t − 1]) ⊆ S. As p(β[1..t − 1]) = β[1..t − 1], we have

(p · perm−1)(S′) = β[1..t − 1] and (p · perm−1)[β[s]] = w < β[t] .

Thus (p · perm−1)(S′ ∪ β[s]) = β[1..t − 1] ∪ w is lexicographically smaller than
β[1..t]. It follows that when the algorithm returns “false”, the set β[1..k] is indeed not
lexicographically minimal in its orbit under G.

Suppose now that the set β[1..k] is not lexicographically minimal in its orbit under
G. Let p be a permutation such that p(β[1..k]) is lexicographically smaller than β[1..k].
Let t be the smallest index in {1, . . . k} such that

p(β[1..t − 1]) = β[1..t − 1] and p(β[t]) < β[t].

By Remark 3, we can write
p = h1 · · · · · hn

with hj ∈ Uβ[j] for j = 1, . . . , n. Observe that w = p(β[t]) was fixed or set to 0 before
fixing β[t] to 1. We have

p−1(β[1..t − 1] ∪w) = β[1..t] and thus p−1[w] = β[s] for some s ∈ {1, . . . , t}.
During the recursive calls to f in orb(), a permutation perm will occur with
perm[β[i]] = p−1[β[i]] for i = 1, . . . , t − 1, namely

perm = h1 · · · · · ht−1 .

Let z := perm−1[β[s]]. Observe that

(perm−1 · p−1)[w] = z and perm−1 · p−1 ∈ stab(β[1..t − 1],G) .

Hence z ∈ orb(w, stab(β[1..t − 1],G)) and z was fixed or set to 0 with w (or earlier).
It follows that remain contains z and that β−1[z] ≥ part zero[t], implying that the
algorithm will return “false”. ��

Pruning by isomorphism in branch-and-cut 85

Crude bounds on the worst case complexity of these two backtracking procedures
are O(n · k!) and O(n · (k + 1)!), respectively, but they turn out to be orders of magni-
tude faster on average, making them practical. (Values of k in the range of 20 to 40 with
n ≥ 200 appear routinely in applications and are handled efficiently.)

Remark 8. For clarity, the algorithms orb in stab() and first in orbit() were presented
separately, but it is possible to take advantage of their similarities to merge them into
one single recursive procedure. ��

5. Isomorphism inequalities

Let a be a node of the enumeration tree and Ha be the set of variables that are not fixed
or set to 0 at node a. Suppose that there exists J ⊆ Ha such that the representative
J ∗ of the orbit of J under G is lexicographically smaller than Fa

1 . Then, if a node b in
the descendants of a with J ⊆ Fb

1 exists, this node will be pruned by IP. Hence, the
isomorphism inequality ∑

j∈J
xj ≤ |J | − 1 (5)

is valid in the subtree rooted at a. Moreover, if the whole restricted enumeration tree is
explored by a depth-first search, always selecting first the son d where the branching
variable is fixed to 1, then the sets Fd

1 are enumerated in lexicographic order, starting
with the smallest one. It follows that if an inequality (5) is generated at a, it is valid for
the rest of the enumeration, i.e. it can be considered global.

The separation algorithm for the isomorphism inequalities is similar to the back-
tracking procedure for testing if a set is lexicographically minimal in its orbit under G.
The parameters of the initializing procedure gen iso cuts() are simply the current node
a, a subset H ⊆ Ha (the motivation for using H instead of Ha will become clear later)
and the current fractional solution 0 ≤ x̄ ≤ 1.

gen iso cuts(a,H, x̄)

/* Output subsets of H generating an isomorphism inequality cut-
ting x̄;*/

ident := identity permutation;
remain := H;
selected := ∅;
sum x[0] := 0;
iso cuts(a, ident, remain, selected, x̄, sum x, 1);

The parameters perm, remain and ind in the call to iso cuts() are similar to the
same parameters in the call of orb in stab(). The set selected is the ordered set of
(ind − 1) points currently chosen; Finally, sum x[k] gives the sum of the entries x̄i for
i ∈ selected[1, . . . , k], for k = 1, . . . , ind − 1 and sum x[0] = 0. Both selected and
sum x are passed by reference during the recursive calls.

86 François Margot

iso cuts(a, perm, remain, x̄, selected, sum x, ind);

For each i ∈ remain do

selected[ind] := perm[i];
sum x[ind] := sum x[ind − 1] + x̄[perm[i]];
If sum x[ind] ≤ ind − 1 then

return;
else

If β−1[i] ≥ part zero[ind] then

Output selected[1..ind];

else
h := T [β[ind], i];
If h �= ∅ then
loc remain := remain − i;
loc remain := h−1(loc remain);
loc perm := perm · h;
If ind < f ixed one then
iso cuts(a, loc perm, loc remain, selected, x̄,

sum x, ind + 1);

Proposition 5. The algorithm gen iso cuts() is correct.

Proof. Removing all tests and operations related to sum x, this algorithm is similar to
first in orbit() with H replacing β[1..k] for the initialization of remain. The proof that
each set in the output is indeed a set whose representative is lexicographically smaller
than Fa

1 is almost identical to the similar proof for first in orbit(). The proof that all
minimal sets generating an isomorphism inequality are in the output is also similar to
the proof of Proposition 4.

The operations related to sum x simply update its entries so that sum x[ind] is the
sum of the entries x̄i for i ∈ selected[1, . . . , ind]. The condition “If sum x[ind] ≤
ind − 1 ...” in iso cuts() is used to identify sets that cannot be extended to a set generat-
ing an isomorphism inequality cutting x̄. When the condition is not met, the algorithm
backtracks to the recursive call with parameter ind − 1. ��

Crude estimates for the worst case complexity of gen iso cuts() is in O(n · |H |!)
but, in practice, it is able to handle efficiently instances with |H | ≥ 100 and n ≥ 200.

It is now time to discuss the way to pick the set H ⊆ Ha . If H = Ha then the above
algorithm is an exact separation algorithm. The purpose of selecting a set H smaller
than Ha is to get a heuristic separation procedure faster than the exact algorithm. Note
that including in H an index i with x̄i = 0 is pointless, and that finding a subset J with
x̄(J) > |J | − 1 is more probable when J is a subset of the indices i with x̄i relatively
large. Thus, a sensible choice is to set H as all indices i such that x̄i > δ for some δ > 0.

Three additional remarks on this algorithm: first, the use of a vector sum x[k] in-
stead of a single variable, say sum x, avoids the update of sum x when performing a
backtracking step. This prevents rounding errors propagating during the course of the

Pruning by isomorphism in branch-and-cut 87

algorithm, as entries in x̄ are rational numbers. Second, it may happen that the same
set J appears several times in the output of the algorithm, since different ordering of
its elements may yield a set with representative better than Fa

1 . Finally, non-minimal
sets can also be in the output. Since, if J1 ⊆ J2, the isomorphism cut generated by J1
implies the one generated by J2, removing duplicates and non-minimal sets in the output
is advisable.

6. Applications

We use the software ABACUS (version 2.3) developed by Thienel [10], [19], [37], now
distributed by OREAS [32], as generic implementation of all branch-and-cut steps (iso-
morphism pruning excepted), and the LP solver is CPLEX7.1 [9]. We briefly describe
results obtained on three applications: covering designs, error correcting codes and hard
covering problems. Files of the test problems (in LP format) can be obtained from [28].

Let V be a set of elements of cardinality v and let k and t be integers such that
v ≥ k ≥ t ≥ 0. Let K be the set of all k-subsets of V and T be the set of all t-subsets
of V . A (v, k, t)-covering design is a collection C of sets in K such that each t ∈ T
is contained in at least one set of C. A (v, k, t)-covering design C is minimum if the
cardinality of C is as small as possible.

Covering designs have a long history and have applications in statistics, coding the-
ory and combinatorics, among others. Numerous theorems give the value of a minimum
covering design under certain assumptions on the parameters (see the survey [30]). Yet,
for particular values of the parameters, only lower and upper bounds are available. A
case in point is the (10, 5, 4)-covering design, for which a lower bound of 50 and an
upper bound of 51 are known [11].

Running the described branch-and-cut algorithm for the (10, 5, 4)-covering design
problem, while pruning nodes as soon as their associated LP relaxation has value strictly
larger than 50, we obtain a proof that no solution better than the best known solution
of 51 exists (see [27] for the ILP formulation and details). The ILP (cov1054.lp) has
252 variables, 384 inequalities and the symmetry group G has order 10! = 3, 628, 800.
The average number of non-empty entries in the Schreier-Sims table over all nodes of
branch-and-cut is about 550. There are only 335 nodes in the enumeration tree and the
cpu time (in seconds) is distributed as follows (the machine used is an HP B2000 running
HP-UX11 with a 500MHz PA-8600 CPU): Total cpu time: 82.83, LP cpu time: 72.09,
Pool separation for inactive inequalities: 0.13, Separation for isomorphism inequalities:
2.50, Operations related to the symmetry group: 9.57.

Although the separation for isomorphism inequalities might seem time consuming,
this should be balanced with the fact that not using these inequalities makes the branch-
and-cut enumeration tree grow from 335 nodes to 495. (These numbers and running times
are slightly better than those in [27] where no 0-setting and a less general isomorphism
pruning were used). It is worth noting that proving that this ILP has no solution with val-
ue 50 is not possible for the branch-and-cut of CPLEX7.1. Even adding straightforward
symmetry breaking inequalities to the ILP formulation does not help much: adding the
constraints requiring that the number of chosen sets containing element i is larger than
the number of chosen sets containing the element i + 1, for i = 1, . . . , 9 and setting x0

88 François Margot

to 1 yields an ILP (cov1054sb.lp) still difficult for CPLEX7.1. Using an upper bound
cutoff of 50.0001, CPLEX7.1 is far from done after more than 60 hours CPU and 3.5
million nodes (with about 300,000 of them still unfathomed).

An error correcting binary code with distance d and word length w is a collection
C of binary w-vectors such that the Hamming distance between any pair of vectors in
C is at least d (Chapter 9 in [8]). The maximum number of vectors in C is denoted by
A(w, d). Here also, for small values of w and d, only bounds on A(w, d) are known.
For example, 72 ≤ A(10, 3) ≤ 76 [25]. A simple set packing formulation with one
variable per binary w-vector with at least three 1’s yields an ILP with a group of or-
der w!. This ILP for finding A(8, 3) (cod83r.lp) is difficult for the branch-and-cut of
CPLEX7.1 as more than 6 hours and about 1 million nodes are needed to solve the
problem. The isomorphism pruning algorithm described in this paper, however, does it
in 143 nodes and 9 seconds CPU. The ILP has 219 variables, 219 inequalities and the
symmetry group G has order 8! = 40, 320. The average number of non-empty entries
in the Schreier-Sims table over all nodes of the branch-and-cut is about 312. The cpu
time (in seconds) is distributed as follows: Total cpu time: 8.52, LP cpu time: 6.52, Pool
separation for inactive inequalities: 0.03, Separation for isomorphism inequalities: 0.05,
Operations related to the symmetry group: 1.05.

Fulkerson [13] introduced a class of difficult set covering problems obtained from
the incidence matrix of Steiner triple systems [15]. As an indication on the difficulty of
these problems, Avis [1] showed that any branch-and-bound algorithm using LP relax-
ations and dominance pruning will enumerate at least 2

√
2n/3 nodes for an infinite family

of such problems on n variables with n → ∞. This class of problems is a good exam-
ple of problems with huge symmetry groups, but for which finding symmetry breaking
inequalities is not easy. Feo and Resende [12] studied similar problems called ST S81
and ST S243, and found good heuristic solutions, but only a few years ago Mannino and
Sassano [26] were able to solve ST S81 to optimality. Their branch-and-bound requires
an enumeration tree with more than 900 million nodes. We report results for the problem
known as ST S81 (sts81.lp). The symmetry group was computed using the program
nauty (version 1.5) written by McKay [31]. CPLEX7.1 is not able to prove optimality
of the optimal value of ST S81.

The isomorphism pruning algorithm described in this paper, however, does it in 385
nodes and 161.95 seconds CPU. The ILP has 81 variables, 1080 inequalities and the
symmetry group G has order 1, 965, 150, 720. The average number of non-empty en-
tries in the Schreier-Sims table over all nodes of the branch-and-cut is about 442. The cpu
time (in seconds) is distributed as follows: Total cpu time: 161.95, LP cpu time: 22.38,
Pool separation for inactive inequalities: 1.92, Separation for isomorphism inequalities:
118.80, Operations related to the symmetry group: 14.69.

It is of course shocking to spend 75% of the time for the generation of isomorphism
inequalities. Two main reasons can explain this: first, the order of the symmetry group is
much larger than in other applications; second, the setH used by default by the algorithm
tends to be relatively large, slowing down the procedure. Tuning the parameters for the
generation of the inequalities (choice of H , frequency of the generation) could improve
the results significantly. For example, turning off the generation of isomorphism cuts
yields an enumeration tree of 659 nodes with the following statistics: Total cpu time:

Pruning by isomorphism in branch-and-cut 89

64.04, LP cpu time: 37.92, Pool separation for inactive inequalities: 0.03, Operations
related to the symmetry group: 19.83.

Acknowledgements. I wish to thank two anonymous referees for their detailed comments and for correcting
a mistake in an earlier version of the proof of Proposition 4.3.

References

1. Avis, D.: A note on some computationally difficult set covering problems. Math. Prog. 8, 138–145 (1980)
2. Babai, L., Luks, E.M., Seress, Á.: Fast management of permutation groups I. SIAM J. Comp. 26, 1310–

1342 (1997)
3. Brown, C.A., Finkelstein, L., Purdom, P.W.: A new base change algorithm for permutation groups. SIAM

J. Comp. 18, 1037–1047 (1989)
4. Butler, G.: Computing in permutation and matrix groups II: Backtrack algorithm. Math. Comput. 39,

671–680 (1982)
5. Butler, G.: Fundamental Algorithms for Permutation Groups, Lecture Notes in Computer Science 559,

Springer, 1991
6. Butler, G., Cannon, J.J.: Computing in permutation and matrix groups I: Normal closure, commutator

subgroups, series. Math. Comp. 39, 663–670 (1982)
7. Butler, G., Lam, W.H.: A general backtrack algorithm for the isomorphism problem of combinatorial

objects. J. Symbolic Comput. 1, 363–381 (1985)
8. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, Springer, 1993
9. ILOG CPLEX 7.1 User’s Manual, 2001

10. Elf, M., Gutwenger, C., Jünger, M., Rinaldi, G.: Branch-and-cut algorithms for combinatorial optimiza-
tion and their implementation in ABACUS. In: Jünger, M., Naddef, D., (eds), Lecture Notes in Computer
Science 2241, Springer, pp. 155–222, 2001

11. Etzion, T., Wei, V., Zhang, Z.: Bounds on the sizes of constant weight covering codes. Designs, Codes
and Cryptography 5, 217–239 (1995)

12. Feo, T.A., Resende, G.C.: A probabilistic heuristic for a computationally difficult set covering problem.
Oper. Res. Letters 8, 67–71 (1989)

13. Fulkerson, D.R., Nemhauser, G.L., Trotter, L.E.: Two computationally difficult set covering problems
that arise in computing the 1-width of incidence matrices of steiner triple systems. Math. Program. Study
2, 72–81 (1974)

14. Gibbons, P.B.: Computational methods in design theory. In: The CRC Handbook of Combinatorial De-
signs, Colbourn, C.J., Dinitz, J.H., (eds), CRC Press, pp. 718–740, 1996

15. Hall, M.: Combinatorial Theory, Wiley 1986
16. Hoffman, C.M.: Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Computer Sci-

ence 136, Springer, 1982
17. Ivanov, A.V.: Constructive enumeration of incidence systems. Ann. Dis. Math. 26, 227–246 (1985)
18. Jerrum, M.: A compact representation for permutation groups. J. Algorithms 7, 60–78 (1986)
19. Jünger, M., Thienel, S.: Introduction to ABACUS – A branch-and-cut system. Oper. Res. Letters 22,

83–95 (1998)
20. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms, Generation, Enumeration, and Search, CRC

Press, 1999
21. Leon, J.S.: On an algorithm for finding a base and a strong generating set for a group given by generating

permutations. Math. Comput. 35, 941–974 (1980)
22. Leon, J.S.: Computing automorphism groups of combinatorial Objects. In: Computational Group Theory,

Atkinson, M.D. (ed.), Academic Press, pp. 321–335, 1984
23. Luetolf, C., Margot, F.: A Catalog of minimally nonideal matrices. Math. Meth. Oper. Res. 47, 221–241

(1998)
24. Luks, E.: Permutation groups and polynomial-time computation. In: DIMACS Series in Discrete Mathe-

matics and Theoretical Computer Science 11, Groups and Computation, L. Finkelsein, W. Kantor (eds),
pp. 139–175, 1993

25. Lytsin, S.: An updated table of the best binary codes known. In: Handbook of Coding Theory, V.S. Pless,
W.C. Huffmann (eds), North-Holland, Elsevier, 1998

26. Mannino, C., Sassano, A.: Solving hard set covering problems. Oper. Res. Letters 18, 1–5 (1995)
27. Margot, F.: Small covering designs by branch-and-cut. To appear in Math. Program.
28. http://www.ms.uky.edu/∼fmargot

90 François Margot: Pruning by isomorphism in branch-and-cut

29. McKay, D.: Isomorph-free exhaustive generation. J. Algorithms 26, 306–324 (1998)
30. Mills, W.H., Mullin, R.C.: Coverings and Packings. In: Contemporary Design Theory: A collection of

Surveys, Dinitz, J.H., Stinson, D.R., (eds), Wiley, pp. 371–399, 1992
31. McKay, B.D.: Nauty user’s guide (Version 1.5). Computer Science Department, Australian National

University, Canberra
32. http://www.oreas.de
33. Padberg, M.W., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large scale symmetric

travelling salesman problems. SIAM Review 33, 60–100 (1991)
34. Read, R.C.: Every one a winner or how to avoid isomorphism search when cataloguing combinatorial

configurations. Ann. Dis. Math. 2, 107–120 (1978)
35. Seah, E., Stinson, D.R.: An Enumeration of non-isomorphic one-factorizations and howell designs for

the graph K10 minus a one-factor. Ars Combinatorica 21, 145–161 (1986)
36. Seress, Á.: Nearly linear time algorithms for permutation groups: An interplay between theory and prac-

tice. Acta Applicandae Mathematicae 52, 183–207 (1998)
37. Thienel, S.: ABACUS - A branch-and-cut system. Ph.D. Thesis, Universität zu Köln 1995
38. Wolsey, L.A.: Integer Programming, Wiley 1998

