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All-Pairs Shortest Paths and the Essential Subgraph 1 

C. C. Mc Ge och  2 

Abstract. The essential subgraph H of a weighted graph or digraph G contains an edge (v, w) if that 
edge is uniquely the least-cost path between its vertices. Let s denote the number of edges of H. This 
paper presents an algorithm for solving all-pairs shortest paths on G that requires O(ns + n 2 log n) 
worst-case running time. In general the time is equivalent to that of solving n single-source problems 
using only edges in H. For general models of random graphs and digraphs G, s = O(n log n) almost 
surely. The subgraph H is optimal in the sense that it is the smallest subgraph sufficient for solving 
shortest-path problems in G. Lower bounds on the largest-cost edge of H and on the diameter of H 
and G are obtained for general randomly weighted graphs. Experimental results produce some new 
conjectures about essential subgraphs and distances in graphs with uniform edge costs. 

Key Words. All-pairs shortest path, Single-source shortest path, Random graph, Random weighted 
graph, Graph diameter, Minimum spanning tree, Essential arcs. 

1. Introduction. Let G = (V, E) be a complete weighted graph  or digraph of  n 
vertices. All edges have positive cost, and some costs may  be infinite; let m denote 
the number  of  edges having finite cost. The cost of  an edge from v to w is c(v, w), 
and the distance between v and w in G is denoted d(v, w). The essent ial  subgraph 

H = (V, E') contains an edge (x, y) ~ E whenever d(x, y) = c(x, y) and there is no 
al ternate  pa th  of equivalent cost. That  is, edge (x, y) is in H when it is uniquely 
the shortest  pa th  in G between x and y. Note  that  H cannot  be immediately found 
by compar ing  G and its distance matrix because of the difficulty of  verifying the 
uniqueness property.  Let s denote the number  of  edges in H. 

This paper presents a new algori thm S H O R T  that  solves the all-pair shortest- 
path (ASP) problem for G. The running time is equivalent to solving n single-source 
shortest-path (SSP) problems using only the edges in H. Any efficient implementa-  
tion of Dijkstra 's  SSP algori thm may  be used as a subroutine:  with F redman  and 
Tarjan 's  [11] implementation, S H O R T  requires O(ns + n 2 log n) time, an improve- 
ment  over their O(nm + n 2 log n) algori thm whenever s = o(m). A recent a lgori thm 
by Karger  et  al. [17] also has O(ns + n 2 log n) running time. 

Fo r  a general average-case model  described in a later section, s = O(n log n) 
almost  surely. The expected running time of  O(n 2 log n) matches that  of  algorithms 
by Frieze and Gr immet  [14], Hassin and Zemel [15], and Moffat  and T a k o a k a  
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[18]. However, these previous algorithms are only useful when their average-case 
models are known to hold for G. 

SHORT represents a departure from standard approaches to the ASP problem. 
Rather than iterating over nodes to solve n SSP problems, the algorithm iterates 
over edges and solves the SSP problems incrementally: SHORT is efficient because 
each distance need only be computed once. 

The next section surveys previous work on the all-pairs shortest-paths problem. 
Section 3 gives the algorithm and its worst-cast and average-case analyses. Some 
properties of the essential subgraph H are presented in Section 4. For example, 
the cost c(r) of the largest-cost edge in H is a lower bound on the diameter of H 
(equivalently of G). A lower bound on c(r) is obtained for a general family of edge 
cost distributions. 

Section 5 describes a modification of SHORT that can randomly generate 
subgraphs H without first generating graphs G. Several experimental observations 
and conjectures are presented concerning graphs G having uniform edge costs. 
For example, it is only known analytically that s is between n - 1 and 27n loge n 
for this model: experiments suggest that E[s] ~ 0.5n 1Oge n. Also, distances in 
uniform graphs appear to be distributed normally. 

2. Previous Work. Floyd [9] describes an 0(?/3 ) ASP algorithm that can be 
implemented with small overhead and is most efficient for dense graphs or graphs 
with negative edge costs. Fredman [10] presents an O(na(log log n)l/a/(log n) l/a) 
algorithm which is rather more complicated. Alon et al. I-2] give a o(rt 3) algorithm 
for restricted types of graphs with running time depending on efficient matrix 
multiplication methods. 

The standard approach to solving ASP when G is fairly sparse is to apply 
Dijkstra's 1-7] SSP algorithm n times, once for each node. Run-time improvements 
have been obtained through better data structures for Dijkstra's algorithm. 
Johnson [16] gives an algorithm requiring O(mlog2+m/,n) time per node. 
Fredman and Tarjan [-11] use Fibonacci heaps to reduce Dijkstra's algorithm to 
O(nlog n + m). Fredman and Willard [12] use Atomic Heaps to obtain an 
O(m + n log n/log log n) algorithm for a computational model in which opera- 
tions such as address calculations are allowed. For graphs with integer edge costs 

and maximum cost C, Ahuja et al. [-1] give an algorithm with O(m + n l x ~ C  ) 
running time for each node. 

Frieze and Grimmet [14] present an ASP algorithm for digraphs which requires 
O(n 2 log n + nm) worst-case time. They also propose an algorithm that first 
extracts a subgraph G, containing at most 20n log z n edges, and solves ASP on 
the subgraph. For a large class of distributions on edge costs, they show that with 
high probability the subgraph G is sufficient for solving the ASP problem for 
G; if the distribution is uniform, then G need have only 12n log z n edges. 

Hassin and Zemel [15] consider the case where G may be directed or undirected 
and the distribution on edge costs is uniform. They describe a subgraph G 
(different from G) that contains no more than 27n log e n edges and show that 
for this model G is almost surely sufficient to compute ASP for G. 
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For both of these algorithms, in the (low-probability) event that the subgraph 
is not sufficient for the computation, an unsuccessful result is detected and a 
conventional ASP algorithm is applied to the original graph G (an erroneous 
computation can be detected in O(m) time). The average time works out to 
O(n 2 log n), an improvement over earlier algorithms by Spira [22] (O(n 2 log 2 n)) 
and Bloniarz [5] (O(n 2 log n log* n)) for graphs with random edge costs. 

The performance of the O(n 2 log n) algorithms depends on the fact that the 
computation is carried out on some small subgraph of G. However, the analyses 
rely upon a priori assumptions about the structure of G: the subgraphs G and 

are claimed to be sufficient only when G obeys the probabilistic models. In 
contrast, SHORT builds the subgraph H on the fly rather than extracting it 
beforehand. When G is not known to conform to the random models, SHORT 
would be preferred because there is no possibility of an incorrect computation 
needing to be redone. Furthermore, H is the optimal subgraph needed for the 
computation, and therefore smaller than either G or G when G does obey the 
random models. Experiments in Section 5 suggest that s ~ 0.5 n loge n for un- 
directed graphs with uniform edge costs, whereas 27n loge n edges are required for 
Hassin and Zemel's algorithm. 

Moffat and Takaoka [18] give a hybrid of Spira's and Bloniarz's algorithms 
that solves n single-source problems, each in O(n log n) expected time and O(n 2) 
worst-case time, in addition to a one-time O(n 2 log n) presorting phase. The 
performance of their algorithm depends upon careful treatment of the candidate 
vertices in each step of a tree-growing process. Their analysis requires only that 
the distribution on edge costs be independent of the edge endpoints; but, again, 
SHORT (or a simpler algorithm with good worst-case performance) would be 
preferred in practice if the average-case model is not known to hold. 

Karger et al. [17] have recently developed a HIDDEN PATHS algorithm that 
has time and space requirements identical to those for SHORT. The main data 
structure in their algorithm is a heap containing both edges and paths in G, 
extracted in order by cost, such that each item extracted is guaranteed to be 
optimal. As an edge or path is extracted, certain new paths are inserted into the 
heap and certain heap elements are updated. Their analysis depends on bounding 
the number of insertions and updates, which depends on s (called m* in their paper). 

Although both SHORT and HIDDEN PATHS iterate over edges instead of 
nodes, they appear to be distinct algorithms. It can be shown, for example, that 
the two algorithms would discover and report distances in different order. In 
practice the choice between SHORT and HIDDEN PATHS may depend upon 
the particular application: for instance, the n shortest-path trees are constructed 
as a by-product of SHORT but not of HIDDEN PATHS. 

There appears to be very little previous work concerning the structure of the 
essential subgraph H. Robert [20] considered a generalization of the shortest-paths 
problem to computations on Q-semirings and used the term essential arcs in a 
different but equivalent definition of edges of H. He showed that the essential 
subgraph is unique for any graph G and that for every vertex pair a shortest path 
between them comprising only essential edges exists. 



All-Pairs Shortest Paths and the Essential Subgraph 429 

3. Algorithm SHORT. It is helpful to think of SHORT as an algorithm for 
constructing H. The construction method sketched below works for either graphs 
or digraphs. 

Algorithm SHORT 
Initialize H to empty 
Initialize Heap to contain all edges of G 
Loop: 

Extract min-cost edge (v, w, c) from Heap 
If  H contains no alternate path from v to w of length c or less, 

then insert (v, w, c) in H 
else discard (v, w, c) 

until Heap is empty. 

We first demonstrate that SHORT builds H correctly. The algorithm costructs 
a sequence of subgraphs H 1 __G H 2 __G ""  H i " "  - Hm __G H . ,  where H i is the sub- 
graph present at the beginning o f  the ith iteration and H .  denotes the final 
product (after the ruth iteration). 

THEOREM 3.1. Edge (v, w), with cost c = c(v, w), is in H .  if and only if the edge 
is in H. 

PROOF. Suppose edge (v, w, c) is Considered during the ith iteration of SHORT. 
Let di(v, w) be the shortest distance from v to w using only edges in H i. If v and 
w are not connected in Hi, then di(v, w) = oo. 

We assume by induction that the subgraph H i has been constructed correctly. 
For  the initial step, note that the minimum-cost edge of G must be in H, and this 
edge will certainly be inserted in H 1 by the algorithm. 

Suppose that di(v, w) < c(v, w). Since (v, w) ~ H/ the re  must be an alternate path 
in H i. Since H i ___ G, there must also be an alternate path in G. 

Now suppose that di(v, w) > c(v, w). There cannot be an alternate path in G such 
that d(v, w) < c(v, w). Suppose there were such a path p. Each edge in p must cost 
strictly less than c(v, w), and so each of these edges is either in H i or can be replaced 
by an alternate path in H i. This would imply that di(v, w)< d(v, w)< c(v, w), 
contradicting our assumption. []  

3.1. The Search Procedure. Considering edges in increasing order by cost ensures 
that each edge need only be examined once in the construction of H, since no 
later, costlier edge could be part of a shorter path. In this section we present a 
Search procedure that returns a decision accept or reject depending upon whether 
an alternate path exists in the partially built subgraph H i. The procedure is 
implemented such that each distance need only be computed once. 

It is helpful to recall Dijkstra's algorithm for the SSP problem (see [7], [21], 
or [23]). A shortest-path tree T(v) rooted at v is a subtree of G such that, for each 
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node w, the shortest path from v to w in G is also the shortest path in T(v). 
Dijkstra's algorithm builds T(v) by maintaining a heap of fringe vertices which 
are not in T(v) but are adjacent to vertices in T(v). Vertices are extracted from the 
fringe heap and added to the tree T(v) in increasing order of distance from v. Once 
x is inserted in T(v), each edge incident on x must be processed: new fringe vertices 
may be inserted in the heap, some current fringe vertices may require a decrease-key 
operation if a shorter distance from v is discovered, and some vertices are ignored 
because they are already tree vertices. We assume the existence of a procedure 
Dijkstra-Process(v, x, y) that operates on edge (x, y) when vertex x is added to T(v). 

The Search procedure constructs n single-source trees incrementally, maintain- 
ing the property that no path of length greater than c is built in any tree before 
all edges of cost c have been considered. (When a path and an edge have equal 
cost, we insert the path and discard the edge.) Therefore no tree need ever be 
modified, since large edges cannot affect short paths. When vertex w is added to 
the tree for T(v), the correct distance d(v, w) is also recorded in a distance matrix. 
We show that the procedure only needs access to the edges of H i during the ith 
search. 

When called with parameters (v, w, c), Search adds more vertices to the tree T(v) 
rooted at v, and updates the fringe heap, until one of the following stopping 
conditions occurs: 

1. An alternate path from v to w having length at most c is found in H~. In this 
case the procedure returns reject. 

2. There are no more edges in the fringe heap, indicating that v and w are not 
connected in H i. The procedure returns accept. 

3. All vertices with distance at most  c from v have been examined. The distance 
to w in Hi must therefore be greater than c. The procedure returns accept. 

The partially built tree and fringe heap are saved between calls to Search. The 
next time Search is called for source vertex v, the procedure continues constructing 
T(v). Since some edges may have been added to H / i n  the interim, it is necessary 
to update the heap in a Restore operation. 

The procedure is sketched below. Entries in the Distance matrix are initialized 
to infinity and contain distances once they are known. Each tree T(v) is initialized 
to contain no edges. Each element of the Fringe(v) heap has three components:  
the name of the fringe vertex, the distance from v to that vertex, and the 
tree_neighbor through which T(v) and the fringe vertex are to be connected. 
Each Fringe(v) heap initially contains the source vertex v, with tree neighbor 
N U L L  and distance 0. The Find_Min operation returns a minimum element 
without modifying the heap, while Extract_Min removes the minimum element. 

Procedure Search(H, v, w, c) 
Stopping condition 1 . 
If Distance[v,w] < c then return(reject) 
Restore step: 
For  each vertex z in T(v), 
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For  each edge (z,y) added to H since the last search from v, 
Dijkstra-Process(v, z, y) 

Loop: 
Stopping condition 2: 
If Fringe(v) is empty then return(accept) 
Stopping condition 3." 
node = Find_Min(Fringe(v)) 
If node.distance > c then return(accept) 
Construct T (v) : 
node = Extract_Min(Fringe(v)) 
x = node .name 
Distance[v, x] = node.distance 
Insert (node.tree_neighbor, x) into T(v) 
For  each edge (x, y) in H, Dijkstra-Process(v, x, y) 
Stopping condition 1: 
If x = w then return(reject) 

Endloop 

Note that some trees may not be completed after the mth call to Search. A 
postprocessing step is necessary that calls Search once for each source node v and 
forces the procedure to reach Stopping Condition 2. With this convention, the 
correctness of the procedure in constructing H, the Distance matrix, and the 
shortest-path trees follows from the observations below: 

1. It is straightforward to show that Dijkstra's algorithm correctly builds single- 
source shortest-path trees of G when restricted to edges in the (completed) 
subgraph H. 

2. Suppose edge (v, w, c) is considered during the ith call to Search. At the 
beginning of this call the procedure has access to H i, a subgraph of H. The 
Restore operation ensures that Dijkstra's algorithm considers all edges of H i. 
With only H i available, the procedure can correctly add a node x to T(v) 
whenever di(v, x) < c, because later edges, of cost c or more, cannot invalidate 
this distance. The stopping conditions ensure that this bound is enforced. The 
postprocessing step ensures that all trees eventually contain n nodes. 

3. If tree construction is correct, any distance recorded in the Distance matrix is 
also correct. 

4. The decision accept/reject is also returned correctly. By Theorem 3.1, there is 
an alternate path in H i if and only if there is one in H. Suppose there is an 
alternate path in H i. If w is already in T(v) at the beginning of the procedure, 
then Stopping Condition 1 at the top is invoked. Otherwise, the procedure will 
add nodes to T(v) until w is discovered, and will reach Stopping Condition 1 
inside the loop. If there is no alternate path in H i, then the procedure will 
eventually reach either Stopping Condition 2 or 3. 

3.2. Analysis o f  SHORT. We first consider the total cost of all calls to Search. 
For  each v, the subroutine Dijkstra-Process processes each edge of H exactly once 
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(either during the Restore operation or in the loop). There are at most n inserts, 
deletes, and s decrease-key operations on the fringe heap. These operations can 
be performed in O(s + n log n) worst-case time using Fredman and Tarjan's [11] 
Fibonacci heaps. There is only constant extra cost per edge for time-stamping and 
locating edges during the Restore operation, since these edges are easily found at 
the back of the adjacency lists of Hi. 

Each call to Search also involves a lookup in the Distance matrix. The total 
cost of all calls to Search is therefore O(n(n log n + s) + m). The heap operations 
in the main loop of SHORT require O(m log m) time. The total cost is therefore 
O(n 2 log n + ns). 

Note that H, the distance matrix, and the shortest-path trees may be completed 
well before the ruth edge is examined; the algorithm can easily detect this fact and 
stop early. This does not change the asymptotic running time, but it could produce 
a considerable speedup in practice. 

The SEARCH procedure requires O(s) space to store H, O(n 2) space to store 
the shortest-path trees, and O(n 2) space for the distance matrix. Note that any 
distance already known must be no more than the current edge cost: therefore 
the comparison in the first line of Search could be replaced by a test of whether 
w is already in T(v). Furthermore, the Restore operation needs to know which 
vertices are currently in T(v), but not necessarily its structure. If distances can be 
reported on-the-fly as they are discovered, then considerable (although constant- 
factor) space savings could be realized by replacing Distance with a bit matrix 
and replacing each T(v) with a list of vertices. 

We now consider the average-case running time. Let G(i) be an unweighted 
graph of size i chosen at random (with arbitrary distribution function). Let p(i) be 
the probability that a graph of size i will fail to have a given property. Then the 
property holds almost surely if the infinite sum of the probabilities p(1), p(2) . . . .  
is finite. This is a stronger condition than holding in probability. 

Frieze and Grimmet [14] consider directed graphs with edge costs drawn 
independently from a fixed distribution F such that F'(0) > 0. The subgraph G 
contains an edge (v, w) of G if w is among the p-nearest neighbors of v, where 
p = min{n-  1, 20 log 2 n}. Their proof that G is almost surely sufficient for 
computing ASP on G implies immediately that H ~ G, since every edge of H is 
necessary for the shortest-path computation, Therefore, for random weighted 
digraphs, s < 20n log2 n almost surely; and the running time of SHORT is 
O(n 2 log n) almost surely. 

Hassin and Zemel [15] consider directed and undirected graphs with the 
uniform distribution on edge weights. Their subgraph G is constructed by extract- 
ing all edges of weight less than 27 log e n/n. They show that G is almost surely 
sufficient for computing shortest paths in G. For random uniform graphs and 
digraphs, SHORT has O(n 2 log n) time almost surely. 

4. Properties of Essential Subgraphs. Very little previous work has appeared 
concerning the structure of the essential subgraph H. Robert [201 shows that the 
essential subgraph is unique and that for every pair of vertices there is a shortest 
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path between them comprising only edges in H. This immediately implies that H 
is sufficient for computing distances in G; and certainly every edge of H is 
necessary. In this sense H is the optimal subgraph for distance computations on G. 

It is easy to show that H is exactly the union of n SSP trees and that H must 
contain a minimum spanning tree of G. Furthermore, since (by the construction 
method) the adjacency lists of H are ordered by increasing cost, nearest neighbors 
can be found in constant time per node. In some applications it may be 
cost-efficient to precompute H and to use it to answer queries regarding distances, 
paths, neighbors, and subtrees of G. 

Also, H can be useful for maintaining distances under edge-cost perturbations 
in G. In general the problem of edge maintence appears to be very difficult: the 
best known algorithms require O(n 2 log n +nm) worst-case time for each pertur- 
bation, which is no better than starting from scratch. Some improvements have 
been achieved for special classes of graphs and updates (see [3] and [19]). 

Consider the problem of maintaining H when an edge of G is modified. If only 
cost decreases occur, then the only possible effect on H is that some essential edges 
may become nonessential; it is only necessary to recompute distances in H to find 
and remove those edges. Therefore H can be maintained without access to the 
edge set of G. If the new subgraph H' has s' edges, then the recomputation can 
be done in O(n 2 log n + ns') time. If cost increases are allowed, then some 
previously nonessential edges may become essential, and the edges set of G must 
be available for proper maintenance of H. 

Lower Bounds on Diameters. For a given graph G, let r denote the rank in G of 
the largest-cost edge in H. This is the last edge that SHORT inserts in H. Let c(r) 
denote the cost of this edge. 

A randomly weighted graph Gv has positive edge costs drawn independently and 
identically distributed according to some fixed probability distribution F, and the 
distribution is independent of the edge endpoints. These graphs are complete 
but some edges may have infinite cost. A uniform graph Gu is a randomly weighted 
graph where the edge-cost distribution is uniform on (0, 1]. 

Frieze and Grimmet [14] give an upper bound on the diameter of randomly 
weighted digraphs in terms of the edge-cost distribution F; when F is uniform the 
diameter is at most 12 loge n/n with probability at least 1 - O(n-2). Hassin and 
Zemel [15] give upper and lower bounds of 27 logen/n and loge n/n for the diameter 
of uniform graphs. The following result generalizes their lower bound to randomly 
weighted graphs. For a given edge-cost distribution function F: R + ~ [0, 1] the 
lower bound is stated in terms of the inverse function F-  1 : [0, 1] ~ R +. 

THEOREM 4.1. Let Gi~ be a randomly weighted graph with distribution F on edge 
costs. Let Po = a log e n/n for some a < 1. Then F -  l(po) <_ c r almost surely. 

PROOV. A probabilistic graph Gp is one in which each edge appears independently 
with probability p. Weide [24] demonstrates the following relationship between 
randomly weighted graphs and probabilistic graphs: Suppose there is an optimiza- 
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tion problem on randomly weighted graphs GF, for which the objective function 
(to be minimized) is the maximum edge cost Ck in a feasible solution. Let K, denote 
the set of feasible solutions. Suppose it is known that, almost surely, a random 
probabilistic graph with edge probability at most Po does not contain a member 
of K, as a subgraph. If F denotes the distribution on edge costs in G, then 
F-1(/)o) < C k almost surely. 

The following optimization problem meets our needs: find the subtree K which 
spans G and for which the cost c k of the largest-cost edge in K is minimized over 
all possible spanning subtrees. Certainly any feasible solution K must be con- 
nected. Erdtis and R6nyi [8] (or see [6]) show that a probabilistic graph with edge 
probability at most P0 = a log e n/n is almost surely not connected. Therefore 
F-l(po) < ck almost surely. Since H must also span G we have c k ~ c(r). [] 

This lower bound on c(r) immediately gives a lower bound on the diameter of 
G, since for any graph G we have c(r) < D I A M ( H )  = DIAM(G).  

This also gives a lower bound on the diameter of a minimum spanning tree 
(MST) of G, since DIAM(G)  < DIAM(MST(G) ) .  It appears that the best known 
upper bound on the MST diameter is Frieze's bound of 1.2 for the total weight of 
the tree [13] (or see [6]). Finding tighter bounds on the MST diameter is an open 
problem. Some experimental results are presented in the next section. 

Of course it is possible to use the distribution function F to translate the lower 
bound on c(r) into a lower bound on r. We can also obtain a lower bound on r 
that is independent of F: a random graph with (n/2) loge n + co(n) edges is almost 
surely disconnected when co(n)~ - o o  [6]. SHORT must examine (but possibly 
discard) at least this many edges when constructing H, because H must span G 
and edge costs are independent of vertices. This lower bound holds for any ASP 
algorithm that considers edges in random order. 

5. Experimental Results. Let G be a random graph with edge costs drawn 
uniformly and independently from (0, 1]. Very little is known analytically about 
distances in random uniform graphs, or about the structure of H for this model. 
This section describes experiments concerning distances, the essential subgraph, 
and related properties for uniform graphs G. 

The algorithm SHORT can be easily modified to generate subgraphs H having 
appropriate distributional properties for uniform graphs G, without first gen- 
erating the graphs. The heap function in the main loop that extracts edges of G 
by increasing cost need only be replaced by a function that randomly generates 
edges with uniform costs assigned in ascending order. Bentley and Saxe [41 give 
an algorithm for generating ordered uniform variates from (0, 13 that requires 0(1) 
storage and 0(1) time per variate. 

To save space, the generation program implemented here stores H but not G, 
the distance matrix, or the shortest-path trees. Since the distance matrix is not 
available, every invocation of Search(v, w, c) causes a (possibly redundant) search 
from v to w in H. This extra search cost would be prohibitively expensive if all m 
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edges were generated. However, by the analytical bounds on c(r) we know that H 
will probably be completed after 27n log e n edges are generated. A stopping 
criterion is needed to allow the algorithm to terminate when H is complete. 

One strategy would be to guess tha t  H is finished after 27n log e n edges have 
been considered. However, this would require extra computat ion to verify correct- 
ness and also to deal with the (low probability) event of a wrong guess. 

Instead, the stopping criterion used in the experiments exploits the fact that the 
diameter of the MST is an upper bound on c(r). The main loop of the generation 
algorithm, while constructing H, also uses Kruskal 's  method to build an MST of 
G. Once the MST is found its diametei" is computed in O(n) time. Edges with cost 
greater than the MST diameter are not generated. Although there is no useful 
analytical upper bound on the diameter of the MST of a uniform graph, the 
approach works well in practice, as is discussed below. 

The experiments were performed on a Sun SPARCstation ELC. The Sun Unix 
generator drand48 provides a stream of random uniform variates; the method of 
Bentley and Saxe [4] was used to generate random edge costs in ascending order. 

The random number generators passed graphical and empirical tests that: edge 
endpoints were generated randomly and independently; edge costs were uniformly 
distributed on (0, 1]; and edge costs were independent of edge vertices. 

Experiments were run for 50 trials each at the problem sizes n = 200, 400 . . . . .  
1400; some detailed experiments producing very large data sets were performed 
at n = 200. About 3 days of C P U  time were required to generate all the data. 

Largest  Edge in H. Let the random variate R be an estimator of r, the rank in 
G of the largest-cost edge in H, and let variate C be the corresponding estimator 
of its cost c(r). From the analytical results cited previously, we expect that 
(n/2) log e n - e < R and that (1 - ~) loge n/n < C < 27 log e n/n when n is large 
enough. 

Experiments suggest that these asymptotic bounds also hold for n below 1400. 
The function form cn loge n provides an excellent fit to R. The mean of the ratio 
R/(n log e n) over all observations was 1.134; at n = 1400 (possibly a better indicator 
of the asymptotic ratio), the observed mean was 1.122. In all experiments the ratio 
was never observed to be outside the range [0.862, 1.563]. 

Both functional forms cn log e n/m and c log~ n/n (which differ only in lower-order 
terms) provide very good fits to the observed values for C, and one is not noticeably 
better than the other. The mean, over all observations, of C/(log~ n/n) was 2.270, 
the mean at n = 1400 was 2.237, and the ratio was never observed to be outside 
the range [1.774, 3.147]. 

CONJECTURE. The limit as n ~ oo o f  r/(n loge n) is a constant near 1.1; the asymp- 
totic ratio c(r)/(loge n/n) is near 2.2. 

Size o f  H. The number of edges in H is denoted s. Certainly n - 1 < s for any 
G, and it is easy to verify analytically that s < r ~ m ' c ( r ) <  13.5nlogen for 
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uniform graphs. Therefore we have a |  n) gap between known upper and lower 
bounds on s. 

Let S be the random variate estimating s in each trial. Figure 1 shows the ratio 
S/n 1Oge n for 50 trials at each n. The solid line connects means S for each n. At 
n = 1400 w e  have S/n log e n = 0.541, which is marked on the graph by a dashed 
horizontal line. 

This figure illustrates the difficulty of extending observations taken at finite n 
to conjectures about asymptotic behavior. It is impossible to tell whether Sin log e n 
is approaching a constant or whether S is asymptotically o(n loge n). However, the 
data provides even less support for a conjecture of cn or even cnloglogn 
asymptotic growth. 

Further evidence that S grows as cn log n appears when we compare S and R. 
Figure 2 shows the observed ratio R/S plotted against S in each trial. The 
horizontal dashed line markes the mean ratio 2.069 observed for all trials. This 
a n d  related analyses give clear indications that the ratio R/S is constant in n, and 
it is known analytically that R = f~(n log n). 

CONJECTURE. For random unO~orm graphs s = D(n log n). Asympto t ica l ly  the ratio 
s/(n loge n) is near 0.5. The ratio r/s is constant  in n. 

It appears, then, that about half of  the r edges that are considered during the 
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construction of H actually become essential edges. Any ASP algorithm that 
examines edges greedily considers only twice as many edges as is absolutely 
necessary. 

Diameter o f  the M S T  Let D denote the diameter of the MST of G observed in 
a single trial, and let L = m" D. We work with L rather than D because some 
types of data analysis are easier (L increases in n while D approaches a constant 
limit) and because we are interested in comparing L with R. 

The variate L appears to grow as l(n) = en !og 2 n for a constant e. A graph of 
L/l(n) is similar in appearance to Figure 1 : possibly the function l(n) overestimates 
asymptotic growth in L. Nevertheless, within the range of problem sizes studied, 
this is the best functional fit found to within a log log n factor: the observations 
L are clearly growing faster than l(n)/log log n and clearly growing more slowly 
than l(n) log log n. The observed constant c was 0.564 on average and was never 
observed to be outside the range [0.396, 0.857]. 

CONJECTURE. 7he diameter of  the M S T  of a uniform graph grows approximately 
as d(n) = l(n)/m = 0.56n log 2 n/m ~ 1.1 log 2 n/(n - 1). 

As noted earlier, the diameter of the MST provides the stopping criterion for the 
random generation algorithm. Since r is about 1.1n log e n it appears that the bound 
l(n) is off by only a factor of log n. These results also suggest that the diameter of 
the MST and the diameter  of G are separated by a log n factor. 
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Distribution o f  Distances in G. Distances in G are of three types, each having 
distinct distributional properties. The s essential distances correspond to costs on 
essential edges. The n - 1 tree distances correspond to edges in the MST of G, 
which is a subset of the essential subgraph. Each of the m - s nonessential distances 

is equivalent to the sum of two or more essential distances. 
Figure 3 shows the distribution of distances by type in three random trials at 

n = 200. In each data set the horizontal bar marks the median, the box ends mark 
the quartiles (containing 50% of the points) and the whiskers mark twice the 
interquartile range. In each trial there were 199 MST edges, 554.67 essential edges 
on average, 19,345.33 nonessential edges on average, and 19,900 total edges. Note 
that since there are many more nonessential edges than essential edges, the 
distributional properties of the former tend to dominate those of the entire set. 
Essential edges tend to be smaller than nonessential edges (as is expected), but 
there is considerable overlap in the distributions of the two types. Tree edges are 
even more highly concentrated near the bot tom end of the range. 

Figure 4 gives a more detailed view of the distribution of tree and essential 
edges, averaged over the three trials at n = 200. The 1500 smallest edges of G are 
shown by rank in groups of 100. For  each group the average number of edges in 
that group that are essential and the average number that are MST edges are 
recorded. For  example, of the smallest 100 edges of G, all 100 are essential edges 
and all 100 are tree edges (in three trials). Of  the 401st-500th largest edges, on 
average 70 are essential and 2 are tree edges. The average number  of nonessential 
edges in each group can be obtained by subtracting the number of essential edges 
from 100 (or, equivalently, by flipping the Essential curve top-to-bottom). 
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The data in Figure 4 can also be read as an empirica ! density plot of essential 
and tree distances, since, for practical purposes, edge ranks and edge costs are 
related by c = r/(m + 1) and for these edge types cost equals distance. The top 
axis marks edge costs for these groups. The right-side axis, showing the fraction 
of essential edges in each group, is scaled for the Essential curve by dividing the 
values on the Count axis by S -- 554.67: for example, about 18% of essential edges 
come from ranks 0-100. 

Theoretical characterization of these distributions remains an open problem. 
Preliminary analysis for these and other trials suggests that at least 80% of 
essential edges come from the range (0, R/2], and that the average essential distance 
is about one-fourth the maximum essential distance (C). 

Figure 5 shows an empirical probability density plot of all distances in G for 
the three trials at n = 200. 

Quantile-quantile plots at this and other values of n suggest that distances are 
fairly well described by normal curve, although some skewing toward the right 
can be observed. A normal curve with mean 0.026 and standard deviation 0.01 
is superimposed on the plot. The center 0.026 corresponds to the observed 
median rather than the mean 0.0271, which provides a better fit to this skewed 
data set. Note that the normal fit is only descriptive: there is no analytical 
argument to suggest that the underlying distribution of distances is normal. 
Indeed a chi-square distribution might be more appropriate since distances are 
bounded below by zero; however this normal curve represents the best empir- 
ical fit found over a small set of candidate distributions (including chi-square). 
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CONJECTURE. Distances in uniform graphs have approximately a normal distribu- 
tion. The average distance is about one-third the maximum distance (the graph 
diameter). 
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