
Algorithmica (1995) 13:426-441 Algorithmica
�9 1995 Springer-Verlag New York Inc.

All-Pairs Shortest Paths and the Essential Subgraph 1

C. C. Mc Ge och 2

Abstract. The essential subgraph H of a weighted graph or digraph G contains an edge (v, w) if that
edge is uniquely the least-cost path between its vertices. Let s denote the number of edges of H. This
paper presents an algorithm for solving all-pairs shortest paths on G that requires O(ns + n 2 log n)
worst-case running time. In general the time is equivalent to that of solving n single-source problems
using only edges in H. For general models of random graphs and digraphs G, s = O(n log n) almost
surely. The subgraph H is optimal in the sense that it is the smallest subgraph sufficient for solving
shortest-path problems in G. Lower bounds on the largest-cost edge of H and on the diameter of H
and G are obtained for general randomly weighted graphs. Experimental results produce some new
conjectures about essential subgraphs and distances in graphs with uniform edge costs.

Key Words. All-pairs shortest path, Single-source shortest path, Random graph, Random weighted
graph, Graph diameter, Minimum spanning tree, Essential arcs.

1. Introduction. Let G = (V, E) be a complete weighted graph or digraph of n
vertices. All edges have positive cost, and some costs may be infinite; let m denote
the number of edges having finite cost. The cost of an edge from v to w is c(v, w),
and the distance between v and w in G is denoted d(v, w). The essent ial subgraph

H = (V, E') contains an edge (x, y) ~ E whenever d(x, y) = c(x, y) and there is no
al ternate pa th of equivalent cost. That is, edge (x, y) is in H when it is uniquely
the shortest pa th in G between x and y. Note that H cannot be immediately found
by compar ing G and its distance matrix because of the difficulty of verifying the
uniqueness property. Let s denote the number of edges in H.

This paper presents a new algori thm S H O R T that solves the all-pair shortest-
path (ASP) problem for G. The running time is equivalent to solving n single-source
shortest-path (SSP) problems using only the edges in H. Any efficient implementa-
tion of Dijkstra 's SSP algori thm may be used as a subroutine: with F redman and
Tarjan 's [11] implementation, S H O R T requires O(ns + n 2 log n) time, an improve-
ment over their O(nm + n 2 log n) algori thm whenever s = o(m). A recent a lgori thm
by Karger et al. [17] also has O(ns + n 2 log n) running time.

Fo r a general average-case model described in a later section, s = O(n log n)
almost surely. The expected running time of O(n 2 log n) matches that of algorithms
by Frieze and Gr immet [14], Hassin and Zemel [15], and Moffat and T a k o a k a

x Much of this research was carried out while the author was a Visiting Fellow at the Center for
Discrete Mathematics and Theoretical Computer Science (DIMACS).
z Department of Mathematics and Computer Science, Amherst College, Amherst, MA 01002, USA.

Received November 27, 1991; revised August 4, 1993. Communicated by D. S. Johnson.

All-Pairs Shortest Paths and the Essential Subgraph 427

[18]. However, these previous algorithms are only useful when their average-case
models are known to hold for G.

SHORT represents a departure from standard approaches to the ASP problem.
Rather than iterating over nodes to solve n SSP problems, the algorithm iterates
over edges and solves the SSP problems incrementally: SHORT is efficient because
each distance need only be computed once.

The next section surveys previous work on the all-pairs shortest-paths problem.
Section 3 gives the algorithm and its worst-cast and average-case analyses. Some
properties of the essential subgraph H are presented in Section 4. For example,
the cost c(r) of the largest-cost edge in H is a lower bound on the diameter of H
(equivalently of G). A lower bound on c(r) is obtained for a general family of edge
cost distributions.

Section 5 describes a modification of SHORT that can randomly generate
subgraphs H without first generating graphs G. Several experimental observations
and conjectures are presented concerning graphs G having uniform edge costs.
For example, it is only known analytically that s is between n - 1 and 27n loge n
for this model: experiments suggest that E[s] ~ 0.5n 1Oge n. Also, distances in
uniform graphs appear to be distributed normally.

2. Previous Work. Floyd [9] describes an 0(?/3) ASP algorithm that can be
implemented with small overhead and is most efficient for dense graphs or graphs
with negative edge costs. Fredman [10] presents an O(na(log log n)l/a/(log n) l/a)
algorithm which is rather more complicated. Alon et al. I-2] give a o(rt 3) algorithm
for restricted types of graphs with running time depending on efficient matrix
multiplication methods.

The standard approach to solving ASP when G is fairly sparse is to apply
Dijkstra's 1-7] SSP algorithm n times, once for each node. Run-time improvements
have been obtained through better data structures for Dijkstra's algorithm.
Johnson [16] gives an algorithm requiring O(mlog2+m/,n) time per node.
Fredman and Tarjan [-11] use Fibonacci heaps to reduce Dijkstra's algorithm to
O(nlog n + m). Fredman and Willard [12] use Atomic Heaps to obtain an
O(m + n log n/log log n) algorithm for a computational model in which opera-
tions such as address calculations are allowed. For graphs with integer edge costs

and maximum cost C, Ahuja et al. [-1] give an algorithm with O(m + n l x ~ C)
running time for each node.

Frieze and Grimmet [14] present an ASP algorithm for digraphs which requires
O(n 2 log n + nm) worst-case time. They also propose an algorithm that first
extracts a subgraph G, containing at most 20n log z n edges, and solves ASP on
the subgraph. For a large class of distributions on edge costs, they show that with
high probability the subgraph G is sufficient for solving the ASP problem for
G; if the distribution is uniform, then G need have only 12n log z n edges.

Hassin and Zemel [15] consider the case where G may be directed or undirected
and the distribution on edge costs is uniform. They describe a subgraph G
(different from G) that contains no more than 27n log e n edges and show that
for this model G is almost surely sufficient to compute ASP for G.

428 c.c. MeGeoch

For both of these algorithms, in the (low-probability) event that the subgraph
is not sufficient for the computation, an unsuccessful result is detected and a
conventional ASP algorithm is applied to the original graph G (an erroneous
computation can be detected in O(m) time). The average time works out to
O(n 2 log n), an improvement over earlier algorithms by Spira [22] (O(n 2 log 2 n))
and Bloniarz [5] (O(n 2 log n log* n)) for graphs with random edge costs.

The performance of the O(n 2 log n) algorithms depends on the fact that the
computation is carried out on some small subgraph of G. However, the analyses
rely upon a priori assumptions about the structure of G: the subgraphs G and

are claimed to be sufficient only when G obeys the probabilistic models. In
contrast, SHORT builds the subgraph H on the fly rather than extracting it
beforehand. When G is not known to conform to the random models, SHORT
would be preferred because there is no possibility of an incorrect computation
needing to be redone. Furthermore, H is the optimal subgraph needed for the
computation, and therefore smaller than either G or G when G does obey the
random models. Experiments in Section 5 suggest that s ~ 0.5 n loge n for un-
directed graphs with uniform edge costs, whereas 27n loge n edges are required for
Hassin and Zemel's algorithm.

Moffat and Takaoka [18] give a hybrid of Spira's and Bloniarz's algorithms
that solves n single-source problems, each in O(n log n) expected time and O(n 2)
worst-case time, in addition to a one-time O(n 2 log n) presorting phase. The
performance of their algorithm depends upon careful treatment of the candidate
vertices in each step of a tree-growing process. Their analysis requires only that
the distribution on edge costs be independent of the edge endpoints; but, again,
SHORT (or a simpler algorithm with good worst-case performance) would be
preferred in practice if the average-case model is not known to hold.

Karger et al. [17] have recently developed a HIDDEN PATHS algorithm that
has time and space requirements identical to those for SHORT. The main data
structure in their algorithm is a heap containing both edges and paths in G,
extracted in order by cost, such that each item extracted is guaranteed to be
optimal. As an edge or path is extracted, certain new paths are inserted into the
heap and certain heap elements are updated. Their analysis depends on bounding
the number of insertions and updates, which depends on s (called m* in their paper).

Although both SHORT and HIDDEN PATHS iterate over edges instead of
nodes, they appear to be distinct algorithms. It can be shown, for example, that
the two algorithms would discover and report distances in different order. In
practice the choice between SHORT and HIDDEN PATHS may depend upon
the particular application: for instance, the n shortest-path trees are constructed
as a by-product of SHORT but not of HIDDEN PATHS.

There appears to be very little previous work concerning the structure of the
essential subgraph H. Robert [20] considered a generalization of the shortest-paths
problem to computations on Q-semirings and used the term essential arcs in a
different but equivalent definition of edges of H. He showed that the essential
subgraph is unique for any graph G and that for every vertex pair a shortest path
between them comprising only essential edges exists.

All-Pairs Shortest Paths and the Essential Subgraph 429

3. Algorithm SHORT. It is helpful to think of SHORT as an algorithm for
constructing H. The construction method sketched below works for either graphs
or digraphs.

Algorithm SHORT
Initialize H to empty
Initialize Heap to contain all edges of G
Loop:

Extract min-cost edge (v, w, c) from Heap
If H contains no alternate path from v to w of length c or less,

then insert (v, w, c) in H
else discard (v, w, c)

until Heap is empty.

We first demonstrate that SHORT builds H correctly. The algorithm costructs
a sequence of subgraphs H 1 __G H 2 __G "" H i " " - Hm __G H . , where H i is the sub-
graph present at the beginning o f the ith iteration and H . denotes the final
product (after the ruth iteration).

THEOREM 3.1. Edge (v, w), with cost c = c(v, w), is in H . if and only if the edge
is in H.

PROOF. Suppose edge (v, w, c) is Considered during the ith iteration of SHORT.
Let di(v, w) be the shortest distance from v to w using only edges in H i. If v and
w are not connected in Hi, then di(v, w) = oo.

We assume by induction that the subgraph H i has been constructed correctly.
For the initial step, note that the minimum-cost edge of G must be in H, and this
edge will certainly be inserted in H 1 by the algorithm.

Suppose that di(v, w) < c(v, w). Since (v, w) ~ H/ the re must be an alternate path
in H i. Since H i ___ G, there must also be an alternate path in G.

Now suppose that di(v, w) > c(v, w). There cannot be an alternate path in G such
that d(v, w) < c(v, w). Suppose there were such a path p. Each edge in p must cost
strictly less than c(v, w), and so each of these edges is either in H i or can be replaced
by an alternate path in H i. This would imply that di(v, w)< d(v, w)< c(v, w),
contradicting our assumption. []

3.1. The Search Procedure. Considering edges in increasing order by cost ensures
that each edge need only be examined once in the construction of H, since no
later, costlier edge could be part of a shorter path. In this section we present a
Search procedure that returns a decision accept or reject depending upon whether
an alternate path exists in the partially built subgraph H i. The procedure is
implemented such that each distance need only be computed once.

It is helpful to recall Dijkstra's algorithm for the SSP problem (see [7], [21],
or [23]). A shortest-path tree T(v) rooted at v is a subtree of G such that, for each

430 C.C. McGeoch

node w, the shortest path from v to w in G is also the shortest path in T(v).
Dijkstra's algorithm builds T(v) by maintaining a heap of fringe vertices which
are not in T(v) but are adjacent to vertices in T(v). Vertices are extracted from the
fringe heap and added to the tree T(v) in increasing order of distance from v. Once
x is inserted in T(v), each edge incident on x must be processed: new fringe vertices
may be inserted in the heap, some current fringe vertices may require a decrease-key
operation if a shorter distance from v is discovered, and some vertices are ignored
because they are already tree vertices. We assume the existence of a procedure
Dijkstra-Process(v, x, y) that operates on edge (x, y) when vertex x is added to T(v).

The Search procedure constructs n single-source trees incrementally, maintain-
ing the property that no path of length greater than c is built in any tree before
all edges of cost c have been considered. (When a path and an edge have equal
cost, we insert the path and discard the edge.) Therefore no tree need ever be
modified, since large edges cannot affect short paths. When vertex w is added to
the tree for T(v), the correct distance d(v, w) is also recorded in a distance matrix.
We show that the procedure only needs access to the edges of H i during the ith
search.

When called with parameters (v, w, c), Search adds more vertices to the tree T(v)
rooted at v, and updates the fringe heap, until one of the following stopping
conditions occurs:

1. An alternate path from v to w having length at most c is found in H~. In this
case the procedure returns reject.

2. There are no more edges in the fringe heap, indicating that v and w are not
connected in H i. The procedure returns accept.

3. All vertices with distance at most c from v have been examined. The distance
to w in Hi must therefore be greater than c. The procedure returns accept.

The partially built tree and fringe heap are saved between calls to Search. The
next time Search is called for source vertex v, the procedure continues constructing
T(v). Since some edges may have been added to H / i n the interim, it is necessary
to update the heap in a Restore operation.

The procedure is sketched below. Entries in the Distance matrix are initialized
to infinity and contain distances once they are known. Each tree T(v) is initialized
to contain no edges. Each element of the Fringe(v) heap has three components:
the name of the fringe vertex, the distance from v to that vertex, and the
tree_neighbor through which T(v) and the fringe vertex are to be connected.
Each Fringe(v) heap initially contains the source vertex v, with tree neighbor
N U L L and distance 0. The Find_Min operation returns a minimum element
without modifying the heap, while Extract_Min removes the minimum element.

Procedure Search(H, v, w, c)
Stopping condition 1 .
If Distance[v,w] < c then return(reject)
Restore step:
For each vertex z in T(v),

All-Pairs Shortest Paths and the Essential Subgraph 431

For each edge (z,y) added to H since the last search from v,
Dijkstra-Process(v, z, y)

Loop:
Stopping condition 2:
If Fringe(v) is empty then return(accept)
Stopping condition 3."
node = Find_Min(Fringe(v))
If node.distance > c then return(accept)
Construct T (v) :
node = Extract_Min(Fringe(v))
x = node .name
Distance[v, x] = node.distance
Insert (node.tree_neighbor, x) into T(v)
For each edge (x, y) in H, Dijkstra-Process(v, x, y)
Stopping condition 1:
If x = w then return(reject)

Endloop

Note that some trees may not be completed after the mth call to Search. A
postprocessing step is necessary that calls Search once for each source node v and
forces the procedure to reach Stopping Condition 2. With this convention, the
correctness of the procedure in constructing H, the Distance matrix, and the
shortest-path trees follows from the observations below:

1. It is straightforward to show that Dijkstra's algorithm correctly builds single-
source shortest-path trees of G when restricted to edges in the (completed)
subgraph H.

2. Suppose edge (v, w, c) is considered during the ith call to Search. At the
beginning of this call the procedure has access to H i, a subgraph of H. The
Restore operation ensures that Dijkstra's algorithm considers all edges of H i.
With only H i available, the procedure can correctly add a node x to T(v)
whenever di(v, x) < c, because later edges, of cost c or more, cannot invalidate
this distance. The stopping conditions ensure that this bound is enforced. The
postprocessing step ensures that all trees eventually contain n nodes.

3. If tree construction is correct, any distance recorded in the Distance matrix is
also correct.

4. The decision accept/reject is also returned correctly. By Theorem 3.1, there is
an alternate path in H i if and only if there is one in H. Suppose there is an
alternate path in H i. If w is already in T(v) at the beginning of the procedure,
then Stopping Condition 1 at the top is invoked. Otherwise, the procedure will
add nodes to T(v) until w is discovered, and will reach Stopping Condition 1
inside the loop. If there is no alternate path in H i, then the procedure will
eventually reach either Stopping Condition 2 or 3.

3.2. Analysis o f SHORT. We first consider the total cost of all calls to Search.
For each v, the subroutine Dijkstra-Process processes each edge of H exactly once

432 C.C. McGeoch

(either during the Restore operation or in the loop). There are at most n inserts,
deletes, and s decrease-key operations on the fringe heap. These operations can
be performed in O(s + n log n) worst-case time using Fredman and Tarjan's [11]
Fibonacci heaps. There is only constant extra cost per edge for time-stamping and
locating edges during the Restore operation, since these edges are easily found at
the back of the adjacency lists of Hi.

Each call to Search also involves a lookup in the Distance matrix. The total
cost of all calls to Search is therefore O(n(n log n + s) + m). The heap operations
in the main loop of SHORT require O(m log m) time. The total cost is therefore
O(n 2 log n + ns).

Note that H, the distance matrix, and the shortest-path trees may be completed
well before the ruth edge is examined; the algorithm can easily detect this fact and
stop early. This does not change the asymptotic running time, but it could produce
a considerable speedup in practice.

The SEARCH procedure requires O(s) space to store H, O(n 2) space to store
the shortest-path trees, and O(n 2) space for the distance matrix. Note that any
distance already known must be no more than the current edge cost: therefore
the comparison in the first line of Search could be replaced by a test of whether
w is already in T(v). Furthermore, the Restore operation needs to know which
vertices are currently in T(v), but not necessarily its structure. If distances can be
reported on-the-fly as they are discovered, then considerable (although constant-
factor) space savings could be realized by replacing Distance with a bit matrix
and replacing each T(v) with a list of vertices.

We now consider the average-case running time. Let G(i) be an unweighted
graph of size i chosen at random (with arbitrary distribution function). Let p(i) be
the probability that a graph of size i will fail to have a given property. Then the
property holds almost surely if the infinite sum of the probabilities p(1), p(2)
is finite. This is a stronger condition than holding in probability.

Frieze and Grimmet [14] consider directed graphs with edge costs drawn
independently from a fixed distribution F such that F'(0) > 0. The subgraph G
contains an edge (v, w) of G if w is among the p-nearest neighbors of v, where
p = min{n- 1, 20 log 2 n}. Their proof that G is almost surely sufficient for
computing ASP on G implies immediately that H ~ G, since every edge of H is
necessary for the shortest-path computation, Therefore, for random weighted
digraphs, s < 20n log2 n almost surely; and the running time of SHORT is
O(n 2 log n) almost surely.

Hassin and Zemel [15] consider directed and undirected graphs with the
uniform distribution on edge weights. Their subgraph G is constructed by extract-
ing all edges of weight less than 27 log e n/n. They show that G is almost surely
sufficient for computing shortest paths in G. For random uniform graphs and
digraphs, SHORT has O(n 2 log n) time almost surely.

4. Properties of Essential Subgraphs. Very little previous work has appeared
concerning the structure of the essential subgraph H. Robert [201 shows that the
essential subgraph is unique and that for every pair of vertices there is a shortest

All-Pairs Shortest Paths and the Essential Subgraph 433

path between them comprising only edges in H. This immediately implies that H
is sufficient for computing distances in G; and certainly every edge of H is
necessary. In this sense H is the optimal subgraph for distance computations on G.

It is easy to show that H is exactly the union of n SSP trees and that H must
contain a minimum spanning tree of G. Furthermore, since (by the construction
method) the adjacency lists of H are ordered by increasing cost, nearest neighbors
can be found in constant time per node. In some applications it may be
cost-efficient to precompute H and to use it to answer queries regarding distances,
paths, neighbors, and subtrees of G.

Also, H can be useful for maintaining distances under edge-cost perturbations
in G. In general the problem of edge maintence appears to be very difficult: the
best known algorithms require O(n 2 log n +nm) worst-case time for each pertur-
bation, which is no better than starting from scratch. Some improvements have
been achieved for special classes of graphs and updates (see [3] and [19]).

Consider the problem of maintaining H when an edge of G is modified. If only
cost decreases occur, then the only possible effect on H is that some essential edges
may become nonessential; it is only necessary to recompute distances in H to find
and remove those edges. Therefore H can be maintained without access to the
edge set of G. If the new subgraph H' has s' edges, then the recomputation can
be done in O(n 2 log n + ns') time. If cost increases are allowed, then some
previously nonessential edges may become essential, and the edges set of G must
be available for proper maintenance of H.

Lower Bounds on Diameters. For a given graph G, let r denote the rank in G of
the largest-cost edge in H. This is the last edge that SHORT inserts in H. Let c(r)
denote the cost of this edge.

A randomly weighted graph Gv has positive edge costs drawn independently and
identically distributed according to some fixed probability distribution F, and the
distribution is independent of the edge endpoints. These graphs are complete
but some edges may have infinite cost. A uniform graph Gu is a randomly weighted
graph where the edge-cost distribution is uniform on (0, 1].

Frieze and Grimmet [14] give an upper bound on the diameter of randomly
weighted digraphs in terms of the edge-cost distribution F; when F is uniform the
diameter is at most 12 loge n/n with probability at least 1 - O(n-2). Hassin and
Zemel [15] give upper and lower bounds of 27 logen/n and loge n/n for the diameter
of uniform graphs. The following result generalizes their lower bound to randomly
weighted graphs. For a given edge-cost distribution function F: R + ~ [0, 1] the
lower bound is stated in terms of the inverse function F- 1 : [0, 1] ~ R +.

THEOREM 4.1. Let Gi~ be a randomly weighted graph with distribution F on edge
costs. Let Po = a log e n/n for some a < 1. Then F - l(po) <_ c r almost surely.

PROOV. A probabilistic graph Gp is one in which each edge appears independently
with probability p. Weide [24] demonstrates the following relationship between
randomly weighted graphs and probabilistic graphs: Suppose there is an optimiza-

434 C.C. McGeoch

tion problem on randomly weighted graphs GF, for which the objective function
(to be minimized) is the maximum edge cost Ck in a feasible solution. Let K, denote
the set of feasible solutions. Suppose it is known that, almost surely, a random
probabilistic graph with edge probability at most Po does not contain a member
of K, as a subgraph. If F denotes the distribution on edge costs in G, then
F-1(/)o) < C k almost surely.

The following optimization problem meets our needs: find the subtree K which
spans G and for which the cost c k of the largest-cost edge in K is minimized over
all possible spanning subtrees. Certainly any feasible solution K must be con-
nected. Erdtis and R6nyi [8] (or see [6]) show that a probabilistic graph with edge
probability at most P0 = a log e n/n is almost surely not connected. Therefore
F-l(po) < ck almost surely. Since H must also span G we have c k ~ c(r). []

This lower bound on c(r) immediately gives a lower bound on the diameter of
G, since for any graph G we have c(r) < D I A M (H) = DIAM(G).

This also gives a lower bound on the diameter of a minimum spanning tree
(MST) of G, since DIAM(G) < DIAM(MST(G)) . It appears that the best known
upper bound on the MST diameter is Frieze's bound of 1.2 for the total weight of
the tree [13] (or see [6]). Finding tighter bounds on the MST diameter is an open
problem. Some experimental results are presented in the next section.

Of course it is possible to use the distribution function F to translate the lower
bound on c(r) into a lower bound on r. We can also obtain a lower bound on r
that is independent of F: a random graph with (n/2) loge n + co(n) edges is almost
surely disconnected when co(n)~ - o o [6]. SHORT must examine (but possibly
discard) at least this many edges when constructing H, because H must span G
and edge costs are independent of vertices. This lower bound holds for any ASP
algorithm that considers edges in random order.

5. Experimental Results. Let G be a random graph with edge costs drawn
uniformly and independently from (0, 1]. Very little is known analytically about
distances in random uniform graphs, or about the structure of H for this model.
This section describes experiments concerning distances, the essential subgraph,
and related properties for uniform graphs G.

The algorithm SHORT can be easily modified to generate subgraphs H having
appropriate distributional properties for uniform graphs G, without first gen-
erating the graphs. The heap function in the main loop that extracts edges of G
by increasing cost need only be replaced by a function that randomly generates
edges with uniform costs assigned in ascending order. Bentley and Saxe [41 give
an algorithm for generating ordered uniform variates from (0, 13 that requires 0(1)
storage and 0(1) time per variate.

To save space, the generation program implemented here stores H but not G,
the distance matrix, or the shortest-path trees. Since the distance matrix is not
available, every invocation of Search(v, w, c) causes a (possibly redundant) search
from v to w in H. This extra search cost would be prohibitively expensive if all m

All-Pairs Shortest Paths and the Essential Subgraph 435

edges were generated. However, by the analytical bounds on c(r) we know that H
will probably be completed after 27n log e n edges are generated. A stopping
criterion is needed to allow the algorithm to terminate when H is complete.

One strategy would be to guess tha t H is finished after 27n log e n edges have
been considered. However, this would require extra computat ion to verify correct-
ness and also to deal with the (low probability) event of a wrong guess.

Instead, the stopping criterion used in the experiments exploits the fact that the
diameter of the MST is an upper bound on c(r). The main loop of the generation
algorithm, while constructing H, also uses Kruskal 's method to build an MST of
G. Once the MST is found its diametei" is computed in O(n) time. Edges with cost
greater than the MST diameter are not generated. Although there is no useful
analytical upper bound on the diameter of the MST of a uniform graph, the
approach works well in practice, as is discussed below.

The experiments were performed on a Sun SPARCstation ELC. The Sun Unix
generator drand48 provides a stream of random uniform variates; the method of
Bentley and Saxe [4] was used to generate random edge costs in ascending order.

The random number generators passed graphical and empirical tests that: edge
endpoints were generated randomly and independently; edge costs were uniformly
distributed on (0, 1]; and edge costs were independent of edge vertices.

Experiments were run for 50 trials each at the problem sizes n = 200, 400
1400; some detailed experiments producing very large data sets were performed
at n = 200. About 3 days of C P U time were required to generate all the data.

Largest Edge in H. Let the random variate R be an estimator of r, the rank in
G of the largest-cost edge in H, and let variate C be the corresponding estimator
of its cost c(r). From the analytical results cited previously, we expect that
(n/2) log e n - e < R and that (1 - ~) loge n/n < C < 27 log e n/n when n is large
enough.

Experiments suggest that these asymptotic bounds also hold for n below 1400.
The function form cn loge n provides an excellent fit to R. The mean of the ratio
R/(n log e n) over all observations was 1.134; at n = 1400 (possibly a better indicator
of the asymptotic ratio), the observed mean was 1.122. In all experiments the ratio
was never observed to be outside the range [0.862, 1.563].

Both functional forms cn log e n/m and c log~ n/n (which differ only in lower-order
terms) provide very good fits to the observed values for C, and one is not noticeably
better than the other. The mean, over all observations, of C/(log~ n/n) was 2.270,
the mean at n = 1400 was 2.237, and the ratio was never observed to be outside
the range [1.774, 3.147].

CONJECTURE. The limit as n ~ oo o f r/(n loge n) is a constant near 1.1; the asymp-
totic ratio c(r)/(loge n/n) is near 2.2.

Size o f H. The number of edges in H is denoted s. Certainly n - 1 < s for any
G, and it is easy to verify analytically that s < r ~ m ' c (r) < 13.5nlogen for

436 C.C. McGeoch

A
C:

o
C:

~0

tO
CO
c~

0

O

k O
ID

0

0
LO

0

i

! ~
I

.

i ! z i !

I I I I I I

200 400 600 800 1000 1200

13

F i g . 1. Size of H.

=
i

I

I

1400

uniform graphs. Therefore we have a | n) gap between known upper and lower
bounds on s.

Let S be the random variate estimating s in each trial. Figure 1 shows the ratio
S/n 1Oge n for 50 trials at each n. The solid line connects means S for each n. At
n = 1400 w e have S/n log e n = 0.541, which is marked on the graph by a dashed
horizontal line.

This figure illustrates the difficulty of extending observations taken at finite n
to conjectures about asymptotic behavior. It is impossible to tell whether Sin log e n
is approaching a constant or whether S is asymptotically o(n loge n). However, the
data provides even less support for a conjecture of cn or even cnloglogn
asymptotic growth.

Further evidence that S grows as cn log n appears when we compare S and R.
Figure 2 shows the observed ratio R/S plotted against S in each trial. The
horizontal dashed line markes the mean ratio 2.069 observed for all trials. This
a n d related analyses give clear indications that the ratio R/S is constant in n, and
it is known analytically that R = f~(n log n).

CONJECTURE. For random unO~orm graphs s = D(n log n). Asympto t ica l ly the ratio
s/(n loge n) is near 0.5. The ratio r/s is constant in n.

It appears, then, that about half of the r edges that are considered during the

A l l - P a i r s S h o r t e s t P a t h s a n d t he Essen t i a l S u b g r a p h 437

gl

tO

,,r
ed

eq.
t'xl

O
cO

cO

+

+

+
�9 t- + + + +

~. + +

§ + 4- +
4- 4-4- 4-+++ 4- 4--t0- + 4- 4- + 4 -

~r ++ § ++
§ r , , ++ 4-t- . + 4-~ 4-+ +
+ t -- -r 4- + - -

�9 + :s TY ,Tg,+ ++

. ~ + + -~- + , 4- + . 4-
g ++4- + t 4- 4- .1- 4-

-~ + + 4-

I I I I I

1000 2000 3000 4000 5000
S

Fig . 2. R v e r s u s S.

construction of H actually become essential edges. Any ASP algorithm that
examines edges greedily considers only twice as many edges as is absolutely
necessary.

Diameter o f the M S T Let D denote the diameter of the MST of G observed in
a single trial, and let L = m" D. We work with L rather than D because some
types of data analysis are easier (L increases in n while D approaches a constant
limit) and because we are interested in comparing L with R.

The variate L appears to grow as l(n) = en !og 2 n for a constant e. A graph of
L/l(n) is similar in appearance to Figure 1 : possibly the function l(n) overestimates
asymptotic growth in L. Nevertheless, within the range of problem sizes studied,
this is the best functional fit found to within a log log n factor: the observations
L are clearly growing faster than l(n)/log log n and clearly growing more slowly
than l(n) log log n. The observed constant c was 0.564 on average and was never
observed to be outside the range [0.396, 0.857].

CONJECTURE. 7he diameter of the M S T of a uniform graph grows approximately
as d(n) = l(n)/m = 0.56n log 2 n/m ~ 1.1 log 2 n/(n - 1).

As noted earlier, the diameter of the MST provides the stopping criterion for the
random generation algorithm. Since r is about 1.1n log e n it appears that the bound
l(n) is off by only a factor of log n. These results also suggest that the diameter of
the MST and the diameter of G are separated by a log n factor.

438 C.C. McGeoch

O r

._m
IZl

O0
O
O

r
O
O

O
d

r
O
O

O
O

I
I

T

I I
I I
I I

J - .j_

Tree Essential Nonessential All
Fig. 3. Distribution of distances.

Distribution o f Distances in G. Distances in G are of three types, each having
distinct distributional properties. The s essential distances correspond to costs on
essential edges. The n - 1 tree distances correspond to edges in the MST of G,
which is a subset of the essential subgraph. Each of the m - s nonessential distances

is equivalent to the sum of two or more essential distances.
Figure 3 shows the distribution of distances by type in three random trials at

n = 200. In each data set the horizontal bar marks the median, the box ends mark
the quartiles (containing 50% of the points) and the whiskers mark twice the
interquartile range. In each trial there were 199 MST edges, 554.67 essential edges
on average, 19,345.33 nonessential edges on average, and 19,900 total edges. Note
that since there are many more nonessential edges than essential edges, the
distributional properties of the former tend to dominate those of the entire set.
Essential edges tend to be smaller than nonessential edges (as is expected), but
there is considerable overlap in the distributions of the two types. Tree edges are
even more highly concentrated near the bot tom end of the range.

Figure 4 gives a more detailed view of the distribution of tree and essential
edges, averaged over the three trials at n = 200. The 1500 smallest edges of G are
shown by rank in groups of 100. For each group the average number of edges in
that group that are essential and the average number that are MST edges are
recorded. For example, of the smallest 100 edges of G, all 100 are essential edges
and all 100 are tree edges (in three trials). Of the 401st-500th largest edges, on
average 70 are essential and 2 are tree edges. The average number of nonessential
edges in each group can be obtained by subtracting the number of essential edges
from 100 (or, equivalently, by flipping the Essential curve top-to-bottom).

All-Pairs Shortest Paths and the Essential Subgraph 439

0
0

0

0

0

0.01
I

+- - -+ .

,,. " ~

', ; \

i

.,,.

Tree
,,

I

200

Edge Cost (Distance)
0.03 0.05

t
0.07

I

Essential

...
\

\

",%
".~,

" " ~'::~::::-+-::-'-'+---t-"'+'+
I I I

600 1000 1400
Rank (Grouped by 100)

Fig. 4. Tree and essential distances.

0.180

0.144

0.108

0.072

0.036

0.000

G.}

"O
UJ

t -

~q
I.IJ

"6
t-
O
O

U.

The data in Figure 4 can also be read as an empirica ! density plot of essential
and tree distances, since, for practical purposes, edge ranks and edge costs are
related by c = r/(m + 1) and for these edge types cost equals distance. The top
axis marks edge costs for these groups. The right-side axis, showing the fraction
of essential edges in each group, is scaled for the Essential curve by dividing the
values on the Count axis by S -- 554.67: for example, about 18% of essential edges
come from ranks 0-100.

Theoretical characterization of these distributions remains an open problem.
Preliminary analysis for these and other trials suggests that at least 80% of
essential edges come from the range (0, R/2], and that the average essential distance
is about one-fourth the maximum essential distance (C).

Figure 5 shows an empirical probability density plot of all distances in G for
the three trials at n = 200.

Quantile-quantile plots at this and other values of n suggest that distances are
fairly well described by normal curve, although some skewing toward the right
can be observed. A normal curve with mean 0.026 and standard deviation 0.01
is superimposed on the plot. The center 0.026 corresponds to the observed
median rather than the mean 0.0271, which provides a better fit to this skewed
data set. Note that the normal fit is only descriptive: there is no analytical
argument to suggest that the underlying distribution of distances is normal.
Indeed a chi-square distribution might be more appropriate since distances are
bounded below by zero; however this normal curve represents the best empir-
ical fit found over a small set of candidate distributions (including chi-square).

440 C.C. McGeoch

O .q-

O
r

Izl

O T.-

O

J �9

g

?
~
�9 g

.

r ',

; �9 "o o

o
/ �9 ~+�9

~149 +o�9

o�9 � 9 1 4 9 ~176149 ~ ~-qLqqlqQQ~ " ~ooooooooo

I ' I I I I

0.0 0.02 0.04 0.06 0.08
Distance

Fig. 5. Density plots of distances.

CONJECTURE. Distances in uniform graphs have approximately a normal distribu-
tion. The average distance is about one-third the maximum distance (the graph
diameter).

Acknowledgments. Thanks go to Jon Bentley, David Johnson, Lyle McGeoch,
and Peter Shor for several stimulating discussions. Bob Tarjan suggested that
the diameter of the minimum spanning tree could be used as a stopping func-
tion for the generation algorithm. Two anonymous referees gave useful sugges-
tions for improving the presentation.

References

I-1] R.K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for the shortest
path problem. J. Assoc. Comput. Mach., 37 (1990), 213-223.

[2] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs shortest path problem.
Proc. 32nd FOCS, 1991, pp. 569-575.

[3] G. Ausiello, G. F. ltaliano, A. M. Spaccamela, and U. Nanni. Incremental algorithms for minimal
length paths. Proc. First SODA, 1990 pp. 12-21.

I-4] J.L. Bentley and J. B. Saxe. Generating sorted lists of random numbers. ACM Trans. Math.
Software, 6(3) (1980), 35%364.

1-5] P. A. Bloniarz. A shortest-path algorithm with expected time o(n 2 log n log* n). SIAM J.
Comput., 12(3) (1983), 588-600.

All-Pairs Shortest Paths and the Essential Subgraph 441

[6]
[71

[81
[91

[10]

[11]

[121

[13]

[14]

[15]

[16]

[17]

[181

[19]

[203

[21]
[22]

[233

[241

B. Bollob~ts. Random Graphs. Academic Press, New York, 1985.
E. W. Dijkstra. A note on tWO problems in connexion with graphs. Numer. Math., 1 (1959),
269-271.
P. Erd6s and A. R6nyi. On random graphs, I. Publ. Math. Debrecen, 6 (1959), 29~297.
R. W. Floyd. Algorithm 97: Shortest path. Comm. ACM, 5 (1962), 345.
M. L. Fredman. New bounds on the complexity of the shortest path problem. S1A M J. Comput.,
5 (1976), 83-89.
M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. Assoc. Comput. Mach., 34(3) (1987), 596-615.
M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. Proc. 31st FOCS, October 1990, pp. 719-725.
A. M. Frieze. On the value of a random minimum spanning tree problem. Discrete Appl. Math.,
10 (1985), 47-56.
A. M. Frieze and G. R. Grimmet. The shortest-path problem for graphs with random arc-lengths.
Discrete Appl. Math., I0 (1985), 57-77.
R. Hassin and E. Zemel. On the shortest paths in graphs with random weights. Math. Oper.
Res., 10(4) (1985), 557-564.
D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. Assoc. Comput.
Mach., 24 (1977), 1-13.
D. R. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: time bounds for all-pairs
shortest paths. SIAM J. Comput., 22(6) (1993), 1199-1217.
A. Moffat and T. Takoaka. An all pairs shortest path algorithm with expected time o(n 2 log n).
SlAM J. Comput., 16(6) (1987), 1023-1031.
K. V. S. Ramaro and S. Venkatesan. On finding and updating shortest paths distributively.
J. Algorithms, 13 (1992), 235-257.
P. Robert. An algorithm for finding the essential sets of arcs of certain graphs. 3". Comb&.
Theory, 10 (1971), 288-298.
R. Sedgewicla. Algorithms. Addison-Wesley, Reading, MA, 1988.
P. M. Spira. A new algorithm for finding all shortest paths in a graph of positive arcs irt average
time O(n 2 log n). S lAM J. Comput., 2(1) (1973) 28-32.
R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1983.
B. W. Weide. Random graphs and graph optimization problems. SlAM J. Comput., 9(3) (1980),
552-557.

