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Abstract

Multicast technology allows the transmission of data from one source node to a selected group of
destination nodes. Multicast routes typically use trees, called multicast routing trees, to minimize resource
usage such as cost and bandwidth by sharing links. Moreover, the quality of service (QoS) is satisfied
by distributing data along a path having no more than a given number of arcs between the root node of
a session and a terminal node of it in the routing tree. Thus, a multicast routing tree for a session can

be represented as a hop constrained Steiner tree.

In this paper, we consider the hop-constrained multicast route packing problem with bandwidth
reservation, Given a set of multicast sessions, each of which has a hop limit constraint and a required
bandwidth, the problem is to determine a set of multicast routing trees in an arc-capacitated network to
minimize cost. We propose an integer programming formulation of the problem and an algorithm to
solve it. An efficient column generation technique to solve the linear programming relaxation is
proposed, and a modified cover inequality is used to strengthen the integer programming formulation.

1. Introduction

Multicast technology can be used to enable
the use of multimedia applications such as voice
and video transmission. It allows the transmission
of data from one source node to a set of
destination nodes. Multicast routes typically use
trees [2], called multicast routing trees, to
minimize resource usage such as cost and
bandwidth by sharing links. Moreover, the quality
of service (QoS) is satisfied by distributing data
along a path having no more than a given number
of arcs between the root node of a session and a
terminal node of it in the routing tree [12], [5],
and [7]. Thus, a multicast routing tree for a
session can be represented as a hop constrained
Steiner tree.

The problem considered in this paper is to
generate a set of multicast routing trees and to
assign them to an arc-capacitated network. Two
objectives have been considered for the problem:

1) to minimize the maximum utilization or
congestion [2], and 2) to minimize the total
installation cost [8]. Utilization for each arc is the
ratio of the traffic loaded on it to the capacity of
it. As the utilization for an arc increases,
congestion may occur. Therefore, by minimizing
the maximum utilization, we can reduce the
maximum congestion of a network. While, given
a target utilization, we can generate a set of
routes to minimize the total installation cost. What
we consider in this paper is this. By the way, as
the maximum utilization or the installation cost is
reduced, QoS for each session generally gets
poorer. This can be avoided by introducing the
hop constraint, that is, by generating a hop
constrained Steiner tree. Therefore, we consider
the hop-constrained multicast route packing
problem with bandwidth reservation (HMRP).

Given a set of multicast sessions, each of
which has a hop limit constraint and a required
bandwidth, the problem is to determine a set of
multicast routing trees in an arc-capacitated
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network to minimize cost. We propose an integer
programming formulation of the problem and an
algorithm to solve it. An efficient column
generation technique to solve the linear
programming relaxation is proposed, and a
modified cover inequality is used to strengthen
the integer programming formulation. For details
of integer programming and column generation
technique, refer to [1], [9], and [10].

The paper is structured as follows. Section 2
presents the formulation of the problem. In
section 3, the column generation procedure to
solve the LP relaxation is given, and valid
inequalities wused to strengthen the initial
formulation are given in section 4. Section 5
presents the column generation procedure to solve
the augmented LP with cuts. The overview of our
algorithm is described in section 6.

2. Problem description and Formulation

In this section, we present the formulation of
HMRP. Given an arc-capacitated network
G=(V,4 the set of multicast sessions, the
capacity requirement and the hop limit for each
session, HMRP finds a set of routing trees, one
per session and assigns them to the network to
minimize the total installation cost while
satisfying the bandwidth capacity restrictions on
each arc.

First, we give some notation to be used in
the formulation of the problem.

a index for arc, asA,

C, cost for the unit flow on arc @ where
as A,

b, capacity of arc @ where a=A,

i index for multicast session, where
2':1’...,’

! root node of session 7  where

i=1,,
V,CV the set of destination nodes of session

7, where 7=1,--,

h; hop limit of session 7, where
2‘:1’...”

W bandwidth requirement of session
where 7=1,---,,

t index for multicast routing tree,

T; set of multicast routing trees for

session 7, where 7=1,--,,
T{a)CT set of routing trees for session i

containing arc @ where 7=1,--, and e A,
A(D set of arcs of which routing tree ¢
consists.

Using the above notation, HMRP can be
formulated as follows:

(HMRP) min 2. 32 "¢, (1)
s.t 2Zxi=s Vi=lr-, )

Zl ot W S by Vas A (3)
and x,={0,1}, VT, i=1,-,, (4)

where  ¢,=w; ZMC Note that ¢, is the

installation cost of routing tree ¢ for session 7.
Here, x, is 1 if and only if multicast session ;

uses routing tree £ otherwise, it is 0.
Constraints (2) ensure that each multicast session
uses exactly one routing tree. Constraints (3)
mean that the total amount of traffic loaded on
an arc should not be greater than the capacity
of it. A linear programming (LP) relaxation of
the formulation can be obtained by removing
integrality restrictions in (4). Let HMRPL be the
LP  relaxation of HMRP. HMRPL has
exponentially many variables. However, we can
solve the LP relaxation efficiently by the
(delayed) column generation technique, which
was successfully used in solving the bandwidth
packing problem, which has a structure similar
to HMRP; see [10]. In the following section,
we describe the procedure to solve HMRPL.

3. Solving the LP relaxation

In this section, we propose an efficient
procedure for solving HMRPL based on the
column generation technique. Considering a subset
of multicast routing trees 7,C7 for each
i=1,---,, we construct a restricted LP relaxation,
referred to as RHMRPL, in the procedure. Let o
be the dual variable associated to the constraint in
(2) for each session 7 Let g, be the dual
variable associated to the constraints in (3) for
each arc @ Also let ¢", " be the values of the
dual variables returned by the simplex method in
the current RHMRPL. Then the column
generation problem associated to session i can be
formulated as follows.

SP()) min w; 3 (c,~ 8! )
st. e T; (6)



Here, £,<0 for each g=A Therefore, the
objective coefficients are all nonnegative. Note
that SP( ;) is the problem that finds a minimum
cost hop constrained Steiner tree, which is known
to be NP-hard [5]. We will introduce how to
solve the hop constrained Steiner tree problem, in
section 6.

If the resulting cost of the routing tree is less
than ¢, the routing tree can be added to the
current restricted formulation. Otherwise, no
column is generated with respect to session i.

4. Cutting-plane

In this section, we derive a class of
cutting-planes used to enhance LP bound. First,
we will consider a point set S defined by the
following constraints:

= ,(a)x :}‘gls vz.: l,"',s (7)
:Z]_ !&Z,(a) wix Hﬁ b‘, (8)
and X S {U,l}, VfE T;'(a), 2.:_[,"‘,. (9)

The above constraints can be obtained from
HMRPL by selecting the inequality (3) related to
an arc g the inequalities (2), and the set of
variables corresponding to the routing trees using
the arc with the integrality constraints (4) related
to the variables.

Note that the wvariables in (8) can be
partitioned into disjoint subsets, one per session
and that the variables in the same subset have the
same coefficient. Therefore, S can be viewed as
the set of a feasible solution to the multi-choice
knapsack problem (MCKP), which is the knapsack
problem where the set of items are decomposed
into disjoint subsets, and at most one item per
subset can be chosen. For the polyhedral results
on MCKP, see [6], and [11]. Park, et al. [10]
showed that every facet-defining inequalities for
the convex set of S, referred to as conv(S), can
be generated from the facets of the corresponding
0-1 knapsack polytope, referred to as conv(KP),
which is defined by the convex set of the
solutions satisfying the following constraints:
(KP)

.

2 wy<b, wherey,e (0,1} Vi=1,-,.  (10)

The following proposition says this.

Proposition 1. (Park, et al. [10])

.
21;1-,. o «<m is a facet-defining inequalities
= t=Tla

.

for conv(S) if and only if Zl:r,y,é:r is a

facet-defining one for conv(KP).

A wvalid inequality for the knapsack polytope
usually generated from a minimal cover inequality
by performing a sequential lifting procedure; for
details refer to [9].

We say that a subset C={1,-:-,n is a cover
when Z;Cw,) b, and that a cover C is minimal
1=

when and sz w;<b, YkeC. Given such a

minimal cover C, the minimal cover inequality is
written as follows:

> v<ld—1 (1)

We will introduce the sequential lifting
procedure in the section 6.

Now, we introduce the separation problem
for the minimal cover inequality, which is defined
as follows: (SEP) Given a solution x* of current
HMRPL, to generate the minimal cover inequality
for S associated with arc ¢ that is most violated
by «x". Then, the separation problem can be
formulated as follows:

.

(SEP) min ¢ = f;l(l—y,‘-: (12)
st 2 wedb, (13)
and z,={0,1} Vi=1,-,, (14)

“fhere y: = !&Z{ a) x,‘

Suppose ¢ is greater than or equal to 1, then
x~ satisfies all of the minimal cover inequality
for S associated with arc @ Otherwise, the
optimal solution to SEP provides a most violated
minimal cover inequality. Note that all of the
optimal solution to SEP may not be minimal
covers because z; such that 1—y;= can always
be 1 in the solution to SEP without increasing the
objective value. We will introduce how we can
always generate a minimal cover in the section 6.

5. Augmented LP (ALP)

In this section, we consider the column
generation procedure to the problem obtained by
augmenting the valid inequalities obtained from S



to HMRPL. Let C(a) be the set of indices for
the valid inequalities generated from S related to
an arc g Then the augmented LP relaxation is as
follows:

(AHMRPL)

min Sl E,_z'f:x it (15)

st M=, Visle, (16)
Z'.“r= W i=b, Vas A (17)

.

t xy<m, VkeCla), asA (18)

i= =T a)

x;=0, VeT, i=1,-,. (19)

Note that, in (18), the wvariables
corresponding to the same session have the same
coefficient (see Proposition 1). Hence we can
easily determine the coefficients of the newly
generated variables.

Let @, B, and 7, be the dual variables
associated to the constraints in (16), (17), and
(18), respectively. If we fix a session 4, the
column generation problem for AHMPRL can be
formulated as the following minimum cost Steiner
tree problem:
min ﬂ&zA:w(w,-cﬂ— will,— L&ZC({A)E?TZ:] (20)

s.t. =T, 1)

If the resulting cost of the Steiner tree is less
than ¢}, the routing tree can be added to the

current formulation. Otherwise, no column is
generated with respect to session 7.

6. Overview of the algorithm

6.1 Overview

In this section, we give a brief and overall
explanation of our algorithm. To solve the
HMRPL, an initial RHMPRL has to be provided.
This initial RHMRPL must be feasible to ensure
that proper dual information is passed to the
column generation problem.

We can generate such a RHMRPL with a set
of dummy columns, one per session, which have
sufficiently large coefficients in the objective
function. The dummy column corresponding to
session 7 has coefficient 1 in the jth row of (2)
and coefficient 0 in the rest.

After solving the current RHMRPL by
simplex algorithm, we perform the column

generation procedure. If new columns are
generated, we add them to RHMPRL and repeat
the same procedure. If no more new columns
generated, 1.e., the present solution is dual
feasible, we proceed to find cutting planes which
are violated by the optimal solution to the current
RHMPRL and they will be added as cuts to it. So
the formulation of AHMRPL is obtained.

If we get AHMRPL, we go through the same
procedure as we do after the initial RHMRPL is
obtained. We solve AHMRPL by simplex
algorithm, and generate needed columns until
there is no one generated. Also for AHMRPL
with its present solution, we find minimal cover
inequalities to add as cuts in AHMRPL.

When no more minimal cover inequalities
can be found and hence no more columns can be
generated, we get a lower bound of HMRP. If
this solution is integral, we are done with an
optimal solution to HMRP. Otherwise, we
perform the branch-and-bound procedure to find
an optimal integer solution to the final AHMRPL.,
This integer solution gives an upper bound,
referred to as an incumbent solution. If the gap
between the two bounds is 0, then the integer
solution is also optimal to HMRP.

6.2 Column generation

As we've mentioned, the column generation
problem for a multicast session is the
hop-constrained Steiner tree problem, which is
known to be NP-hard [5].

To solve the HMRPL to the optimality, the
column generation algorithm should give an
optimal solution. To our knowledge, there are two
optimal  guaranteeing  algorithms  for the
hop-constraint Steiner tree problem, which are
both based on the linear programming approach.
Gouveia [5] formulated the hop-constrained
Steiner tree problem as a directed multi-
commodity flow model with flow variables. We
gave a formulation using path variables and
proposed a branch-and-pricing algorithm for it in

[7].

Simplex algorithm incorporated in the
branch-and-bound routine can easily solve the
former formulation. However, the formulation has
too many variables and constraints. Therefore, we
consider the latter formulation in this paper.

Before introducing the formulation, we first



define a feasible route » as a directed path from
the root node () to a terminal node w=V,
using at most J, arcs. Let R(y) be the set of
feasible paths to a terminal node y=7V, and
Ru,a)SR(v) be the set of paths in R(u)
containing g=A. In the formulation, there are
two types of variables: x, and y,,. The binary
variables x, a@=A indicate whether arc a is

contained in the Steiner tree and the binary
variables y,,, »=R(v) and p=V, indicate

whether path » from ¢! to o is realized in the

Steiner tree. The formulation is written as follows:

SP(7)

min 201, (22)

st Xa™ )&%‘ﬂ)y”’zL VGEA vE V"" (2’3)
g{ }y e -.s V?}E V:‘s (24)
x,£10,1), VaeA (25)
y.£1{0,1}, VreR(v), veV, (26)

Note that the coefficients {z,} in the
objective function are all non-negative. Moreover,
without loss of generality, we can assume all of
them to be positive by letting the coefficient be
#,+, for each arc g=A, where & is a quite
small positive number. Refer to [7] for the details
of the algorithm.

6.3 Finding minimal Cover Inequalities

Here, we explain how a minimal cover is
found. As noted earlier, the separation problem
can be formulated as a knapsack problem, which
does not always give a minimal cover. However,
the following result shows an easily way to fix
this problem.

Proposition 2. When the coefficients in the
objective function are all positive, a cover
corresponding to an optimal solution to SEP is
always minimal.

proof)

We prove this by contradiction. Assume the
resulting cover C is not minimal. Then there is
k=C such that Z w;> b,, and therefore

=TV

C\ {k} 1S also a cover. Moreover,
: ., where ¢;=1— because ¢;>(.
:ECZ{H ford Z;Cc, c=1—; ;>0

This contradicts that C is corresponding to an
optimal solution to SEP.

Therefore, we can always generate a minimal
cover by letting the coefficients be 1—y;+,
where £ is a quite small positive number.

6.4 Lifting Procedure

To strengthen the generated minimal cover
inequalities, we wuse the lifting procedure
introduced in [9].

Every cover inequality generated from a
minimal cover C can give rise to a lifted cover
inequality of the form

2 61}’:'-'- :EZC,YJ}’:'-'- :§: y,£|C1|_l+ :g:w (2?)

=ENC
where C,NC;=¢ CUC;=¢ and N={1,---,m

Moreover, {3;} and {y;} can be chosen so
that (27) defines a facet of the knapsack convex
hull. The coefficients in (27) are obtained by
sequential lifting. Unfortunately we know of no
efficient way to consider all possible ordering of
the elements of N\NC that can be used in
sequential lifting. From a practical point of view,
we avoid this difficulty by choosing an ordering
of the elements of N\ C in a greedy fashion.

A Lifting Heuristic to obtain a lifted cover
inequality of the form (27) with C;=¢

Initialization: Given y*, solve the knapsack
problem to obtain a minimal cover C. If the
optimal objective value is greater than 1+,

where &£,>(0, no cutting planes are generated.

Stop. Otherwise, let L'=N\( and let k=1
Set §,= VieC. (Note even though the

cover inequality corresponding to C is not
violated, it may be able to be lifted to be
violated.)

Iteration J: For all jeL* find A, which is the
maximum  value  of x;, such  that
vt 20 dy=<ld— is  valid. Let

=NVL
i"=argmax _,. Ay. Set L*"'=L*{/ and
§.-=A., If L*¥'=¢ test
Z;Va,xma—l. If so, add the cut
Z}\ﬁ,y,-ﬁld—], If L, #@ k—Fk+ Return.

whether

We have A;=|(]—1— where
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=NWL
3 wysb—w, y=B.08)

A simple extension of the lifting heuristic
suggests how we can also search for extended
cover inequalities of the form (27) with Cs+@.

Separation Algorithm to obtain lifted cover
inequality (27)

Step 1. Apply the lifting heuristic described
above. If a violated inequality is found, stop.
Step 2: 1If not, choose k= argmax ;- w;y. Set
Cs={k, and wuse the lifting heuristic to
generate a facet-defining inequality for conv
(S% from the cover C\({k}, where

5‘*:{},53”—1; 2 wyisb,—u

= N ) .
Step 3: The inequality in this step is of the
following form

:E%\CSJ}’:'-'_ ;,yiglcll s

where C;= C\ {£] (29)
Find the maximum value of ¢, such that the
following inequality is valid:

on Ovit Dyt yn=ICl=14 . (30)

We have y,= ¢,—(|C;|—, where
Ge=max( 3 s+ Ec.yﬁ 2 wy<b,

=N
Step 4: Check the resulting inequality (30) for
violation. Stop.

6.5 Column generation to AHMRPL

As noted earlier, column generation to
HMRPL and AHMRPL can be done very
efficiently. In the case of HMRPL, the
coefficients of the newly generated column are
decided according to the arcs that the
corresponding routing tree uses. Suppose the
newly generated column is for session ; and its
corresponding tree is £ The coefficient of the ith
row of (2) is 1, and the coefficients of the rest of
rows of (2) are 0. If routing tree { uses are e,
then we set the coefficient of the gth row of (3)
to be w; otherwise, 0.

In AHMPRL, the coefficients of the rows of
(16) and (17) are decided in the same way as
stated above. We will explain how to determine
the coefficients of the rows of (18).

First, for each constraints in (18), identify
from which constraints of (17) the row is derived.
If kth row in (18) derived from the ath
constraints in (17), and tree ¢ corresponding to
the new column uses the arc g then the new
column will be made to have the coefficient z*

in the row.

7 Future research topics

In this paper, we only proposed an algorithm
based on the mathematical programming
technique, which gives an tight lower-bound and
an incumbent solution. To analize the performance
of the algorithm, it is required to implement the
algorithm. In addition, it is needed to develop a
branch-and-cut procedure for it to generate an
optimal solution.
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