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Abstract We consider the routing and wavelength assignment (RWA) in survivable WDM

network. A path protection scheme assumed and two different wavelength assignment meth-

ods for protection paths are considered. Integer programming formulations of RWA under

two wavelength assignment methods are proposed and we devised algorithms to solve them.

Test results show that the difference of wavelength requirements between two wavelength

assignment methods is 5–30%.
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Introduction

Wavelength division multiplexing (WDM) technology is used to accommodate several wave-

length channels on a fiber. An all-optical network based on WDM is considered as a very

promising approach for the realization of future large bandwidth networks (Lee, Lee, and

Park, 2000). In a WDM network without wavelength conversion, an optical path (lightpath)

with a dedicated wavelength is established for each required connection and no two paths

using the same wavelength pass through the same link to avoid collision. The RWA problem

is how to realize the required connection among nodes without wavelength collision. It is

crucial for network planning and design to determine the wavelength requirements. Many

studies on RWA have been performed (Chlamtac, Ganz, and Karmi, 1992; Kurma and Kurma,

2002; Lee et al., 2000).
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Survivability is an ability to recover the traffic when a network component fails and it has

been an important issue in designing a fiber-optic based telecommunication network. In a

layered transmission network such as WDM network, several layers (such as SONET, ATM

and IP) may have their own recovery procedures. However, the recovery time for higher

layers (such as ATM and IP) is still significantly large (on the order of seconds), whereas

we expect that restoration times at the optical layer will be on the order of milliseconds to

minimize data losses (Bonefant, 1998). Furthermore, it is beneficial to consider protection

mechanisms in the optical layer for the following reasons: (a) the optical layer can effi-

ciently multiplex protection resources among several higher-layer network applications, and

(b) survivability at the optical layer provides protection to higher-layer protocols that may

not have built-in protection (Ramaswami, 2000).

Optical layer protection schemes in WDM networks can be implemented at either path

layer or link layer and there are several protection schemes. We refer to Gerstel and

Ramaswami (2000) for detailed characteristics and comparisons of those schemes.

In wavelength assignment for protection paths, there are two possible methods (Mohan

and Murthy, 2000; Nagatsu, Okamodo, and Sato, 1996). One method assigns an arbitrary

wavelength for each protection path (method-DIFF). The other method assigns the same

wavelength to the protection paths as its corresponding working path (method-SAME). In

method-SAME, because of the more strict limitation on wavelength reuse throughout the

network, the inefficient use of network resources may be caused. On the other hand, in

method-DIFF, the higher the bit rate of lightpath, the more significantly the protection per-

formance is affected by the processing capability of the electrical level switching (Nagatsu,

Okamodo, and Sato, 1996).

In this paper, we show the difference of wavelength requirements between the two methods.

To get the wavelength requirements, we solve the RWA under the two methods when the same

working paths are given. We assume the single-link failure scenario and a path protection

scheme in optical layer. When a failure occurs, the event is quickly disseminated to all the

pertinent nodes, which set up the predetermined protection paths for the failed lightpaths

and switch data to them (Nagatsu, Okamodo, and Sato, 1996). The protection path for each

working path is independent to the location of the failure. In other words, a working path and

the corresponding protection path are link-disjoint. We call the RWA problem under the two

protection methods SRWA-I and SRWA-II, respectively.

Many studies on RWA considering survivability have been performed. Nagatsu, Okamoto,

and Sato (1996) decompose the problem into two subproblems and solve them sequentially.

One is to construct working paths and the other is to construct protection paths. They proposed

a heuristic procedure for each subproblem. Miyao and Saito (1998) proposed an integer

programming formulation considering a path protection when full wavelength conversion is

permitted in every nodes. Then, the problem is free from wavelength assignment for each path.

They assume that the set of possible pairs of a working path and corresponding protection path

is given and solve the formulation by CPLEX. Ramamurthy and Mukherjee (1999) proposed

an integer programming formulation which contains path variables. But, their formulation

is huge and does not contain all constraints for wavelength assignment. They tried to solve

the formulation with a small sized problem instance but they could not obtain an optimal

solution. Modiano and Tam (2001) consider the problem to setup lightpaths for preserving

2-connected network after a link failure. They proposed an integer programming formulation

and solve with CPLEX. But, their formulation does not consider the wavelength assignment

for lightpaths. Reddy, Manimaran, and murthy (2000) consider the problem to reconfigure all

the existing lightpaths not to reroute only the failed lightpath when a link failure is occurred.

They propose a restoration scheme based on a heuristic rerouting procedure to minimize
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Fig. 1 Two cases of wavelength
assignment on a working path
and a protection path

blocked lightpaths. Narula-Tam, Lin, and Modiano (2002) considers the RWA on WDM ring

networks. They calculated the lower bound of required wavelengths and proposed routing

and wavelength assignment algorithms.

In this paper, we give integer programming formulations to SRWA-I and SRWA-II using

the concept of routing configuration described in the following section. A similar concept is

used in our other papers (Lee, Lee, and Park, 2000; Lee et al., 2000) but we did not consider

the survivability in those papers. The routing configurations have distinct properties because

of survivability and it is quite different to obtain the configuration. The formulations have

exponentially many variables but we can solve the linear programming (LP) relaxation of

them by column generation technique (Barnhart et al., 1998; Savelsbergh, 1997). The column

generation problems are also NP-hard. But, we formulate them and we propose an branch-

and-price algorithm to solve them. After solving the LP relaxation, we propose a variable

fixing procedure combined with column generation to obtain an integral solution.

This paper is organized as follows. In Section 1, we describe the problem and we give

integer programming formulations. We explain the algorithm in Section 2. In Section 3, we

show computational results and conclusions are given in Section 4.

1. Mathematical model

In this section, we propose integer programming formulations of SRWA-I and SRWA-II.

Consider an undirected mesh network G = (V, E) where V is a given node set and E is a

given edge set. When a set of working paths P is given, we select a link-disjoint protection

path for each working path and assign a wavelength for each working and protection path.

The objective is to minimize the number of required wavelengths for maximizing the

wavelength reuse. Now, we introduce some notations.

op, dp: two end nodes of working path p ∈ P

R(p): set of all possible protection paths for working path p ∈ P

R = ∪p∈P R(p)

E(p): set of links used by path p

To avoid wavelength collision, no two paths passing the same link use the same wave-

length. But, the constraint on protection paths can be relaxed as follows under method-DIFF.
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� Two protection paths sharing some links can use the same wavelength if the two corre-

sponding working paths don’t share any link. Suppose that two working paths share no

links. Then, the working paths don’t be failed at the same time under the single-link fail-

ure and the protection paths for them need not be activated at the same time. Thus, the

protection paths can use the same wavelength though they share some links.� A working path and a protection path sharing some links can use the same wavelength if

the working path is failed whenever the protection path is activated. Let’s consider working

path p1 and protection path r for working path p2 in Fig. 1. In (a) and (b), p1 and r share

link (1, 3) and p1 also shares a link with p2. In (a), if p2 is failed then p1 is also failed.

In other words, p1 is also failed whenever r is activated. Thus, p1 and r can use the same

wavelength though they share link (1, 3). But, in (b), if the link (2, 4) is failed, then p2 is

failed and r is activated but p1 is not failed. Thus, p1 and r can’t use the same wavelength.

To formulate SRWA-I, we introduce the concept of routing configuration which was used

in Lee et al. (2000). Here, a routing configuration is a set of paths in the union of P and R.

We call routing configuration c as survivable independent routing configuration (SIRC) if

all the paths in c can be established using only one wavelength under the method-DIFF. In

other words, the paths in an SIRC make no wavelength collision satisfying above relaxed

condition. Then, SIRC c can be represented by a binary vector (ac, bc) ∈ B2|P|. The pth

element of ac and bc, denoted as apc and bpc, are 1 if working path p and a protection path

for p is contained in routing configuration c, respectively. Define C as the set of all SIRC’s

and we can formulate SRWA-I as the following integer program.

(MP1) min
∑
c∈C

zc

s.t.
∑
c∈C

apczc ≥ 1, for all p ∈ P (1)

∑
c∈C

bpczc ≥ 1, for all p ∈ P (2)

zc ∈ {0, 1}for all c ∈ C

Each decision variable zc = 1, c ∈ C if SIRC c is established, otherwise, zc = 0. Con-

straints (1) and (2) ensure that all given working paths and a protection path for each working

path should be established. Object function is the number of required wavelengths. MP1

does not decide the wavelength assignment of paths explicitly but we can easily obtain the

wavelength assignment by assigning different wavelength to each SIRC c∗ when zc∗ = 1.

We call a routing configuration identical survivable independent routing configuration
(ISIRC) if all contained paths can be established using one wavelength under method-SAME.

If working path p is contained in an ISIRC, then a corresponding protection path r ∈ R(p)

must be contained in the same routing configuration. Thus, if a link is used by a working path,

then the link cannot be used by any other protection path because the protection path can be

activated. Otherwise, the link can be used by several protection paths because at most one of

the protection path passing the link in the configuration can be activated at a time. Consider

the examples in Fig. 2. Routing configuration (a) is an ISIRC containing two closed trails.

Link (2, 3) is used by working path p1 and then the link could not be used any other path.

But, the link (1, 2) and (1, 3) are used by two protection paths because the two protection

paths are not activated at the same time. Note that no two protection paths are activated at
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Fig. 2 Two routing
configurations constructing new
graph and paths

the same time in an ISIRC because the corresponding working paths must be in the ISIRC

and they don’t share any link. Thus, a link can be used by only one working path or arbitrary

number of protection paths. So, the configuration (b) is not an ISIRC because link (1, 3) is

used by working path p1 and protection path r2. When the link (3, 4) is failed, r2 is activated

and a collision occurs on link (1, 3).

If working path p is contained in an ISIRC, then a corresponding protection path r must

be contained in the same routing configuration. A closed trail of a graph is a closed walk that

traverses each link at most once. Because p and r are link-disjoint, those two paths form a

closed trail. In other words, an ISIRC consists of several closed trails and each closed trail

is divided into a working path and a corresponding protection path. Then, an ISIRC can be

represented by a binary vector dc ∈ B |P|. The pth element of dc, denoted as dpc is 1 if a closed

trail for p is contained in ISIRC c, otherwise, dpc = 0. Define C ′ as the set of all ISIRC’s

and we can formulate SRWA-II as the following integer program.

(MP2) min
∑
c∈C ′

zc

s.t.
∑
c∈C ′

dpczc ≥ 1, for all p ∈ P (3)

zc ∈ {0, 1} for all c ∈ C ′

Each decision variable zc = 1, c ∈ C ′ if ISIRC c is established, otherwise, zc = 0. Con-

straints (3) ensure that at least one closed trail for each working path must be selected. It

also means that all given working paths and protection paths corresponding them should be

established. Like MP1, we can easily obtain the wavelength assignment by assigning the

same wavelength to paths contained in an ISIRC c∗ when zc∗ = 1. Then, each working and

corresponding protection path use the same wavelength.

2. Algorithm

LP (Linear Programming) relaxation is obtained by dropping integral restriction on deci-

sion variables in an integer programming. Note that LP relaxations of MP1 and MP2 have

exponentially many variables. Thus, it is impractical to solve them with all variables before-

hand. However, we devised an algorithm to solve them efficiently by using column generation

technique (Barnhart et al., 1998; Savelsbergh, 1997). Column generation technique starts with
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a restricted LP which contains a subset of variables at initial stage and needed variables are

added later. Then, the key problem in the technique is to check whether the current solution

is optimal or not and to find a needed variable when the solution is not optimal. The problem

is called pricing problem.

2.1. Pricing problems

The pricing problems for MP1 and MP2 are to find a maximum weighted SIRC and ISIRC,

respectively. They can be formulated following integer programming SP1 and SP2, respec-

tively.

(SP1) max
∑
p∈P

α∗
px p +

∑
p∈P

∑
r∈R(p)

β∗
p yr

s.t.
∑

r∈R(p)

yr ≤ 1, for all p ∈ P (4)

∑
p∈P

d p
e1,e2

x p +
∑
p∈P

∑
r∈R(p)

dr
e1,e2

yr ≤ 1, for all e1, e2 ∈ E (5)

x p, yr ∈ {0, 1} for all p ∈ P and r ∈ R

α∗
p and β∗

p are the values of the pth dual variables returned by the simplex method of (1)

and (2) in restricted LP relaxation of MP1. The coefficient d p
e1,e2 = 1 if e1 = e2 or working

path p passes link e1 but it does not pass e2, otherwise d p
e1,e2 = 0. Similarly, dr

e1,e2
= 1 if

protection path r ∈ R(p) passes link e1 and corresponding working path p passes link e2,

otherwise dr
e1,e2

= 0. Each decision variable x p = 1, p ∈ P if working path p is selected,

otherwise, x p = 0. Decision variable yr = 1, r ∈ R if protection path r is selected, otherwise,

yr = 0. Constraints (4) ensure that at most one protection path for each working path can

be established. Constraints (5) ensure that a feasible solution to SP1 is an SIRC. Suppose

that two working paths p1 and p2 pass link e1 then the coefficients d p1
e1,e1 and d p2

e1,e1 are 1 and

both paths cannot be selected simultaneously. If two protection paths share link e1 such that

the corresponding working paths share link e2, then dr
e1,e2

for two protection paths are 1 and

both paths cannot be selected simultaneously. Similarly, (5) satisfy the constraint between a

working path and a protection path described in Section 2. Suppose that working path p1 and

protection path r for working path p2 share link e1. If there exists link e2 such that p2 passes

e2 and p1 does not pass e2, then p2 is failed and p1 is not failed when e2 is failed. Thus, p1

and r cannot use the same wavelength because r can be activated without failing of p1. In

that case, d p1
e1,e2 and dr

e1,e2
are 1 in (5) and both paths cannot be selected simultaneously. As a

result, a feasible solution to SP1 is an SIRC.

(SP2) max
∑
p∈P

∑
h∈H (p)

γ ∗
p xh

s.t.
∑
p∈P

∑
h∈H (p)

dr
eh xh − |P|(1 − ye) ≤ 0, for all e ∈ E (6)

∑
p∈P

∑
h∈H (p)

d p
eh xh − ye ≤ 0, for all e ∈ E (7)

xh, ye ∈ {0, 1} for all h ∈ H and e ∈ E
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γ ∗
p is the value of the pth dual variable returned by the simplex method of (3) in restricted

LP relaxation of (3). A closed trail for a working path p consists of working path p and a

corresponding protection path r ∈ R(p). The coefficient dr
eh = 1 if the protection path r in

closed trail h pass edge e, otherwise dr
eh = 0. Similarly, d p

eh = 1 if working path p in closed

trail h pass edge e, otherwise d p
eh = 0. H (p) is the set of all possible closed trails on G which

contain working path p ∈ P and H = ∪p∈P H (p). Each decision variable xh = 1, h ∈ H if

closed trail h is selected, otherwise, xh = 0. Decision variable ye = 1, e ∈ E if edge e can be

used by a working path, otherwise, ye = 0. Constraints (6) ensure that link e may be used by

multiple protection paths if the link is used by no working path. Constraints (7) ensure that

at most one working path can pass on a link. (6) and (7) satisfy the restriction for an ISIRC

described in the previous section, so a feasible solution to SP2 is an ISIRC.

As shown above, SP1(SP2) is the problem to find a maximum weighted SIRC(ISIRC).

Now, we consider the computational complexity of SP1 and SP2. First, we can easily find that

to get a set of working paths, such that no two paths share a link, which has maximum weight

is a special case of SP1 and SP2. Consider the following decision problem DP associated

with the special case.

Instance: Graph G = (V, E), a given path set P , path weight wp, p ∈ P , positive integer L

Question: Is there a subset of P ′ ⊆ P such that no two paths in P ′ share a link and the sum

of weights greater than or equal to L?

Now, consider the following INDEPENDENT SET problem which is NP-complete (Garey

and Johnson, 1979).

Instance: Graph G = (V, E), positive integer K .

Question: Does G contain an independent set of size K or more, i.e., a subset V ′ ⊆ V such

that |V ′| ≥ K and no two vertices in V ′ are joined by an edge in E?

Proposition 1. SP1 and SP2 are NP-hard.

Proof: Given an arbitrary instance of the INDEPENDENT SET problem where G = (V, E),

we can construct a new graph G ′ = (VA, VB, E ′) as follows.

1. Make center node v0.

2. Let edge i ∈ E be represented by two nodes vi ∈ VA and v′
i ∈ VB and join them with a

link. (Number the links in E from 1 to |E |)
3. Join the center node and all nodes in VA and VB with links.

4. Make a cycle with the nodes in VA by adding links (1, 2), (2, 3), . . . , (|E | −
1, |E |), (|E |, 1).

Now, we present node v ∈ V as path pv on G ′ to have following properties. Denote δ(v) as

the set of links in G which are incident to v.

1. pv starts at v0.

2. pv passes link (vi , vi+1) ((v|E |, v0) when i = |E |) in ascending order of i if and only if

i ∈ δ(v).

3. pv passes the link (v0, vi ) if and only if it passes the link (vi , vi+1) ((v|E |, v0) when

i = |E |).
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Fig. 3 Constructing new graph G ′ and paths

Then, if two nodes in G are joined by a link i ∈ E , then two paths on G ′ corresponding

the two nodes share at least link (vi , vi+1) and there is no shared link between two paths on

G ′ if and only if the corresponding nodes in G are not joined. Thus, it can be easily shown

that there is one-to-one correspondence between solutions of independent set problem on G

and solutions of DP on G ′ where P = {pv} for all v ∈ V , L = K and wp = 1 for all p ∈ P .

An example of the transformation is shown in Fig. 3. It is clear that the transformation is

performed in polynomial steps. Thus, DP is NP-compete and consequently SP1 and SP2 are

NP-hard. �

But, we devised following branch-and-price algorithms to solve them.

2.1.1. Column generation procedure for SP1

Now, we explain the column generation procedure to solve the LP relaxation of SP1. Let

SLP1 be the LP relaxation of SP1 and let SLP1′ be a restricted LP relaxation obtained by

replacing R(p) in SLP1 by R′(p) ⊂ R(p), for all p ∈ P . We construct initial SLP1′ with

P and R′(p) = ∅ for all p ∈ P . Let ρp, for all p ∈ P , and δe1,e2
, for all e1 and e2 ∈ E ,

be the nonnegative dual variables associated with constraints (4) and (5), respectively. We

can solve SLP1′ by the simplex method and let (x∗, y∗) be the obtained optimal solution to

SLP1′ and let (ρ̄, δ̄) be the corresponding optimal dual solution. Then, the reduced cost of

each protection path r ∈ R(p), denoted cr
p, is as follows.

cr
p = β∗

p − ρ̄p −
∑

e1∈E(r )

∑
e2∈E(p)

δ̄e1,e2

If there exists no protection path whose reduced cost is positive, then current solution

(x∗, y∗) is optimal. Thus, column generation problem is to find a protection path whose

reduced cost is maximum. For a working path p, note that β∗
p and ρ̄p are determined values

and protection path r ∈ R(p) must be link-disjoint with respect to p. Thus, the column

generation problem for p ∈ P is to find a shortest path between op and dp on a given

network G = (V, E \ E(p)) with the link weight
∑

e2∈E(p) δ̄e1,e2
for e1 ∈ E \ E(p). Because

Springer



Ann Oper Res (2006) 146:75–89 83

the link weights are nonnegative, we can solve the problem in polynomial time. Denote the

obtained shortest path as r∗
p and the length of r∗

p as l pr∗ . If β∗
p − ρ̄p − l pr∗ ≤ 0 for all p ∈ P ,

then (ρ̄, δ̄) is an optimal dual solution to the dual of SLP1 and (x∗, y∗) is an optimal solution

to SLP1. Otherwise, we add r∗
p to SLP1′ for each p ∈ P with β∗

p − ρ̄p − l pr∗ > 0 and solve

SLP1′ again. We can solve SLP1 by repeating the above column generation procedure until

no more column is generated.

2.1.2. Branch-and-price procedure for SP1

After solving SLP1, if the obtained optimal solution to SLP1 is integral then we solved

SP1. Otherwise, we perform branch-and-price procedure to get an optimal solution to SP1.

Branch-and-price procedure is the same as the branch-and-bound procedure except that the

column generation procedure is used to solve SLP1 at every node in the branch-and-bound

tree. In the branch-and-price procedure, a branching rule is required such that the column

generation is possible after branching. Devising such a branching rule is an important key

in the branch-and-price procedure. Refer Barnhart et al. (1998) for more details about the

branch-and-price procedure.

Now, we present our branching rule which does not destroy the structure of the above

column generation procedure after branching. When an optimal solution (x∗, y∗) to SLP1

is obtained, first we check whether x∗
p ∈ {0, 1} for all p ∈ P . Denote U (x∗, y∗) ⊆ P as the

set of working paths such that corresponding x∗ has fractional value. If |U (x∗, y∗)| > 0, we

branch on x p∗ such that p∗ = arg maxp∈U (x∗,y∗) x∗
p. We make two new branches, one of them

would force x p∗ to be 1, the other would force x p∗ to be 0. In the column generation, no

working path is generated. Thus, the column generation problem is not changed in those

branches.

If |U (x∗, y∗)| = 0, then either (x∗, y∗) is integral or y∗ is not integral. Suppose that y∗

is not integral. We define K (x∗, y∗; e1, e2) ⊂ P for all e1, e2 ∈ E such that working path

p ∈ K (x∗, y∗; e1, e2) if and only if there exists a protection path r ∈ R(p) with y∗
r > 0 such

that e1 ∈ E(r ) and e2 ∈ E(p). Then, the following proposition can be derived.

Proposition 2. Suppose (x∗, y∗) is an optimal solution to SLP1′. When |U (x∗, y∗)| = 0 and
|K (x∗, y∗; e1, e2)| ≤ 1 for all e1, e2 ∈ E then

∑
r∈R(p) y∗

r = 0 or 1 for all p ∈ P.

Proof: Suppose that there exists p∗ ∈ P such that 0 <
∑

r∈R(p∗) y∗
r < 1. Then there exists

protection path r∗ ∈ R(p∗) such that y∗
r∗ > 0. Let’s consider the solution (x̄, ȳ) such that x̄ p =

x∗
p for all p ∈ P , ȳr = y∗

r for all r �= r∗ and ȳr∗ = 1 − ∑
r∈R(p)\r∗ y∗

r . We can easily know

that (x̄, ȳ) is a feasible solution to SLP1′ because |K (x∗, y∗; e1, e2)| ≤ 1 for all e1, e2 ∈ E .

The objective value of (x̄, ȳ) is greater than or equal to that of (x∗, y∗) because the objective

coefficient β∗
p∗ in SLP1′ for protection path for p∗ is greater than or equal to 0. If the objective

coefficient is greater than 0, then it is a contradiction since (x∗, y∗) cannot be an optimal

solution to SLP1′. If the objective coefficient is equal to 0, then no protection path for p∗

has positive reduced cost. Then, no restoration path in R(p∗) can be generated in column

generation procedure and SLP1′ contains no path in R(p∗). Thus, it is also a contradiction

because
∑

r∈R(p∗) y∗
r = 0. �

Clearly, if (x∗, y∗) is an integral solution, then |U (x∗, y∗)| = 0 and |K (x∗, y∗; e1, e2)| ≤ 1.

Converse is not always true. However, when we obtain (x∗, y∗) by the simplex method we

can derive the following positive result from Proposition 2.
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Proposition 3. Suppose an optimal solution (x∗, y∗) to SLP1′ is obtained by the simplex
method. When |U (x∗, y∗)| = 0, if |K (x∗, y∗; e1, e2)| ≤ 1 for all e1, e2 ∈ E then (x∗, y∗) is
integral.

Proof: Clearly, x∗ is integral. Suppose that y∗ is not integral, then there exists p∗ such

that y∗
r for r ∈ R(p∗) are not integral and

∑
r∈R(p∗) y∗

r = 1 by Proposition 1. Define

R(p∗; y∗) ⊆ R(p∗) such that r ∈ R(p∗; y∗) if and only if y∗
r > 0. Consider the solutions

(x̄, ȳ)s , s ∈ R(p∗; y∗) which are obtained as follows. We let x̄ = x∗, ȳr = y∗
r if r /∈ R(p∗; y∗),

ȳr = 0 if r ∈ R(p∗; y∗) \ {s} and ȳr = 1 if r = s. It is easily verified that (x̄, ȳ)s, s ∈
R(p∗; y∗) are feasible solutions to SLP1′ because |K (x∗, y∗; e1, e2)| ≤ 1 for all e1, e2 ∈ E .

Moreover, (x∗, y∗) = ∑
s∈R(p∗;y∗) y∗

s · (x̄, ȳ)s and
∑

r∈R(p∗) y∗
r = ∑

s∈R(p∗;y∗) y∗
s = 1. In other

words, (x∗, y∗) is represented by a convex combination of other feasible solutions to SLP1′,
which is a contradiction since the simplex method always finds an extreme point optimal

solution. �

When x is integral (|U (x∗, y∗)| = 0), we only check if |K (x∗, y∗; e1, e2)| ≤ 1 for all

e1, e2 ∈ E instead of checking the integrality of (x∗, y∗) by Proposition 3. For a given solution

(x∗, y∗) such that |U (x∗, y∗)|= 0, we get K (x∗, y∗; e1, e2) for all e1, e2 ∈ E . Then, we choose

e∗
1 and e∗

2 ∈ E with the lowest index such that (e∗
1, e∗

2) = arg maxe1,e2∈E |K (x∗, y∗; e∗
1, e∗

2)|.
If |K (x∗, y∗; e∗

1, e∗
2)| = 1, we get an integral solution by Proposition 3. Otherwise, we divide

K (x∗, y∗; e∗
1, e∗

2) into two disjoint sets K1(x∗, y∗; e∗
1, e∗

2) and K2(x∗, y∗; e∗
1, e∗

2), such that

K1(x∗, y∗; e∗
1, e∗

2) = {p∗} and K2(x∗, y∗; e∗
1, e∗

2) = K (x∗, y∗; e∗
1, e∗

2) \ K1(x∗, y∗; e∗
1, e∗

2),

where p∗ = arg maxp∈K (x∗,y∗;e∗
1 ,e∗

2 )

∑
r∈R(p),e∗

1∈E(r ) y∗
r with the lowest index. Then we

make two branches in the branch-and-bound tree such that any protection path for

p ∈ K1(x∗, y∗; e∗
1, e∗

2) can not use link e∗
1 in the first node and any protection path for

p ∈ K2(x∗, y∗; e∗
1, e∗

2) can not use link e∗
1 in the second node. That is, for the first node, we

require

yr = 0, for all r ∈ R(p) such that e∗
1 ∈ E(r ) and p ∈ K1(x∗, y∗; e∗

1, e∗
2)

and for the second node, we require

yr = 0, for all r ∈ R(p) such that e∗
1 ∈ E(r ) and p ∈ K2(x∗, y∗; e∗

1, e∗
2).

To satisfy the above requirements, for each variable yr which is already generated, we set

the upper bound of the variable to 0 if e∗
1 ∈ E(r ) for r ∈ R(p) with p ∈ K1(x∗, y∗; e∗

1, e∗
2)

in the first node, i.e. we set yr = 0. We perform similar bound setting in the second node.

Further, for each p ∈ K1(x∗, y∗; e∗
1, e∗

2), we perform the column generation procedure over

the network obtained from removing e∗
1 from the network G = (V, E \ E(p)) in the first

node. Thus, we can generate columns by solving the shortest path problem after branching.

For the second node, we apply the same scheme.

We can use the above branching rule by giving priority to x in branching. We branch on

x first if there exist any one which has fractional value and we branch on y if x is integral.

2.1.3. Algorithm for SP2

We explained the branch-and-price algorithm for SP1. SP2 can be solved similar

branch-and-price procedure. In solving SP2, column generation problem is to find a closed
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trail whose reduced cost is maximum. For a working path p, we must find a closed trail

which contains p and we only find a protection path between op and dp. Then, the column

generation problem for p ∈ P is to find a shortest path between op and dp on a given network

G = (V, E \ E(p)). Similarly SP1, we devised a branching rule which does not change the

column generation problem structure and we can solve SP2 optimally. In the rule, we de-

fine U ′(x∗, y∗) ⊆ E as the set of links such that corresponding y∗ has fractional value and

P(x∗, y∗; e) ⊂ P for all e ∈ E such that working path p ∈ P(x∗, y∗; e) if and only if there

exists a closed trail h ∈ H (p) with x∗
h > 0 such that e ∈ E(p).

2.2. Overall algorithm with variable fixing

After solving LP relaxation of MP1 or MP2, if the obtained optimal solution is not integral,

we can consider the branch-and-price procedure to obtain an optimal solution. But, it requires

a method to prevent the regeneration of existing columns like the branching rules in above

subsection. However, we can’t devise such a branching rule and we consider only the case

that a fractional variable is fixed to 1 and we generate more columns after fixing the variable.

First, we select a variable which has maximum value among the variables having fractional

Fig. 4 Overall procedure of the algorithm
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value in the last LP relaxation and then fixed the value of the variable to 1. After fixing,

we solve the LP relaxation and we perform the column generation procedure until no more

column is generated. If the obtained solution is integral then we have found an integral

solution. Otherwise, we select another variable which has fractional value and fixed it to 1

and then generate columns again. We repeat above steps until we get an integral solution.

The procedure does not guarantee to find an optimal solution. But the final LP relaxation

may contain many columns that are part of the optimal solution because the most profitable

columns are generated and we generate more columns in the variable fixing procedure. Thus,

we can expect to find a good solution. We can check the quality of our solution by comparing

it with the lower bound obtained from the optimal value of LP relaxation. Computational

results in the next section show that our solution is very good.

The flow chart of overall algorithm is given in Fig. 4.

3. Computational experiments

We tested our algorithm on two networks that are shown Figs. 5 and6. One is a 11-node

network which is well cited in survivability studies and the other is the NSFNET.

For the test, we randomly generated working paths for all pairs of two nodes in each

network. The number of working paths for each pair of nodes is 1 or 2 with the same

probability. We use the shortest path between two nodes as the working path. We tested 20

randomly generated problem instances for each network. The tests were run on a pentium

PC(700 MHz) and we used CPLEX callable mixed integer library as a LP solver. Test results

are summarized in Tables 1 and2. In the table, the heading �ZL P−DI F F
 and �ZL P−S AM E


Fig. 5 The topology of 11-node
test network

Fig. 6 National science
fundamental network
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Table 1 Computational results on 11-node network

No. �ZL P−DI F F 
 Z M1 Gap1 Time1 (sec.) �ZL P−S AM E
 Z M2 Gap2 Time2 (sec.) Dif. Dif (%)

1 16 16 0 51.79 18 18 0 65.20 2 12.5

2 16 16 0 48.55 17 17 0 51.68 1 6.3

3 17 17 0 28.18 20 20 0 33.57 3 17.6

4 15 15 0 14.89 16 16 0 33.93 1 6.7

5 19 19 0 43.94 20 20 0 117.53 1 5.3

6 18 18 0 13.23 19 19 0 51.03 1 5.6

7 15 15 0 24.99 16 16 0 103.45 1 6.7

8 18 18 0 32.08 19 19 0 266.43 1 5.6

9 16 16 0 11.37 18 18 0 81.57 2 12.5

10 19 19 0 27.30 20 20 0 38.70 1 5.3

11 19 19 0 10.60 21 21 0 57.62 2 10.5

12 19 19 0 11.10 20 20 0 59.93 1 5.3

13 18 18 0 10.57 19 19 0 147.61 1 5.6

14 18 18 0 16.09 19 19 0 126.81 1 5.6

15 18 18 0 28.86 19 19 0 70.32 1 5.6

16 19 19 0 22.90 20 20 0 75.62 1 5.3

17 17 17 0 31.08 20 20 0 134.40 3 17.6

18 19 19 0 14.07 20 20 0 66.64 1 5.3

19 16 16 0 17.52 17 17 0 160.39 1 6.3

20 16 16 0 30.09 18 18 0 48.48 2 12.5

Table 2 Computational results on NSFN

No. �ZL P−DI F F 
 Z M1 Gap1 Time1 (sec.) �ZL P−S AM E
 Z M2 Gap2 Time 2 (sec.) Dif. Dif (%)

1 25 25 0 381.24 28 28 0 323.02 3 12.0

2 20 20 0 492.91 25 25 0 2602.32 5 25.0

3 21 21 0 709.64 27 27 0 1328.04 6 28.8

4 20 20 0 977.56 23 23 0 2131.21 3 15.0

5 23 23 0 450.39 29 29 0 1616.34 6 26.1

6 22 22 0 639.78 25 25 0 999.15 3 13.6

7 24 24 0 749.19 29 29 0 1489.64 5 20.8

8 22 22 0 870.24 25 25 0 773.52 3 13.6

9 21 21 0 535.25 26 26 0 941.47 5 23.8

10 17 17 0 715.57 21 21 0 1731.36 4 23.5

11 20 20 0 562.22 25 25 0 725.72 5 25.0

12 25 25 0 588.75 29 29 0 3061.27 4 16.0

13 19 19 0 604.51 24 24 0 1485.41 5 26.3

14 20 20 0 963.56 24 24 0 1790.79 4 20.0

15 21 21 0 662.95 25 25 0 1435.70 4 17.3

16 22 22 0 696.57 28 28 0 1337.87 6 27.3

17 27 27 0 684.04 29 29 0 241.73 2 7.4

18 19 19 0 785.48 24 24 0 858.04 5 26.3

19 19 19 0 342.96 23 23 0 914.18 4 21.1

20 20 20 0 605.44 26 26 0 896.66 6 30.0
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refer to the value obtained by rounding up the optimal objective value of LP relaxation of

MP1 and MP2, respectively and they provides a lower bound on the optimal objective value.

Z M1 and Z M2 refer to the objective value of SRWA-I and SRWA-II obtained by our algorithm.

Gap1 and Gap2 are defined as Gap1 = Z M1 − �ZL P1
 and Gap2 = Z M2 − �ZL P2
 which give

the upper bound on the difference optimal solution and solution obtained by our algorithm.

The time to solve SRWA-I and SRWA-II by our algorithm are reported under the heading of

Time1 and Time2, respectively. Dif is the difference of the wavelength requirements between

method-DIFF and method-SAME.

As shown in the table, we get optimal solutions to all the test problems by our algorithm

and the LP relaxations gives very tight bounds. Obviously, method-SAME requires more

wavelengths. Our test results show that method-SAME requires about 6–30% more wave-

lengths than method-DIFF. On 11-node network, the difference is 6–18% and the difference

is larger on NSFN. The 11-node network is more dense than NSFN and more paths exist

between two nodes and it may cause the small difference. More experiments on various

networks is required to know about the relation between the difference and network density.

4. Conclusions

We consider the routing and wavelength assignment problem on survivable WDM network.

We proposed integer programming formulations of SRWA under two wavelength assignment

methods and we devised algorithms based on column generation to solve them. We used the

column generation technique to solve the LP relaxations of the problems efficiently. To solve

the column generation problems, we developed branch-and-price algorithms. After solving

the LP relaxation, we applied a variable fixing procedure combined with column generation

to obtain an integral solution. We tested our algorithm on randomly generated data and our

algorithm gives optimal solutions to all of the test problem instances.

In this paper, we considered the path protection schemes. Considering other protection

schemes could be good research works. We assumed that the working paths are given, but

the problem which decide the routing of working and protection paths together may be worth

consideration. The problem may be very hard. However, any approach for the problem might

be a worthwhile effort.
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