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Abstract--This paper considers a new type of an assembly line balancing problem which occurs in a 
company manufacturing electronic home appliances. The problem has some special characteristics. The 
main difficulty in this problem is that the precedence diagram is not enough to describe the precedence 
relationships between the tasks. It is shown that the usual line balancing model is a special case of the 
problem considered in this paper. After considering two subproblems, a heuristic algorithm for the 
problem is proposed. The algorithm is based on some network theories. Computational results based on 
some real world problems show the proposed algorithm works well in practice. A full system which 
incorporates graphic user interface is developed and currently in use. © 1997 Elsevier Science Ltd. All 
rights reserved 

1. INTRODUCTION 

In recent years, many OR/MS techniques have been developed and successfully used to solve 
decision making problems. However, it is felt by some practitioners that the well-established models 
and methodologies found in the OR/MS literature are rather inadequate to be used in their 
applications since they cannot reflect many factors arising in the real world. This paper presents 
an experience to solve a real world problem using well known OR/MS techniques. 

One of the extensively studied problems in production management is the line balancing problem. 
Usually, the problem is stated as follows [1]. For a given set of tasks with their processing times 
and a set of workstations, find an assignment of each task to a workstation to minimize the cycle 
time while satisfying the precedence constraints imposed on the set of tasks. Many useful techniques 
have been proposed to solve the model. For example, see [2] for a survey of the exact algorithms 
and [3] for a survey of heuristics. Recently, Johnson [4] and Hoffman [5] proposed efficient search 
procedures for the problem. 

Though the model as stated above is very useful in many situations, in practice, there may exist 
more complicated constraints. For example, some pairs of tasks cannot be assigned into the same 
workstation because of incompatibility between them caused by the different characteristics of the 
operations needed, the materials used, the limited workspace, or other technological factors. Also, 
there can exist a natural distinction of the tasks according to the process design. Johnson [6] 
considered the line balancing problem with a few modifications, such as preplanned imbalance and 
assigning tasks to particular types of workstations. 

The line balancing problem (LBP) considered in this paper occurs in a company manufacturing 
home appliances and has many characteristics different from the usual line balancing models. This 
paper proposes a heuristic procedure to solve the problem. 

This paper is structured as follows. In Section 2, the statement of the problem is presented with 
a few preliminary analyses. Section 3 presents two subproblems which will be used to develop a 
solution algorithm of the line balancing problem. Section 4 presents analysis of the two 
subproblems and Sections 5 and 6 give algorithms to solve them. A heuristic procedure for the 
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line balancing problem is presented in Section 7 and computational results are given in Section 
8. Finally, Section 9 gives concluding remarks. 

2. STATEMENT OF THE PROBLEM 

The line balancing problem (LBP) considered in this paper has the following characteristics. 

(i) The set of tasks is partitioned into two disjoint sets. One is called the set of fixed tasks, and 
the other is the set of float tasks. 

(ii) On the set of fixed tasks, a linear precedence is imposed, that is, the fixed tasks should be 
performed one after the other. 

(iii) Some pair of consecutive fixed tasks cannot be assigned to the same workstation because 
of the incompatibility between them. 

(iv) For each float task, there is a set of ranges expressed in terms of pairs of fixed tasks. The 
float task should be assigned between the fixed tasks specified in any one of the ranges. 

(v) For some pairs of float tasks, there exist precedence constraints. 

Figure 1 illustrates an example of the line balancing problem. The determination of the 
characteristic of a task as a fixed or a float task is made in the process design. The fixed tasks can 
be thought of as the primary operations needed to assemble a given product, which usually have 
a natural sequence. The set of float tasks can be considered as the secondary operations. The 
distinction is somewhat flexible in the sense that some tasks may be defined as fixed or floating 
depending on the situation. 

Let us call the constraints in (iii) the incompatibility constraints, (iv) the range constraints, and 
(v) as the partial precedence constraints. The problem considered in this paper is to find an 
assignment of the tasks to the workstations, which minimizes the cycle time and satisfies the above 
mentioned constraints while the number of workstations is given. 

The main difficulty encountered when applying the existent line balancing methods to this 
problem is that the precedence diagram is not enough to describe the range constraints. The number 
of ranges attached to each float task is usually greater than one. For example in Fig. l, a float 
task numbered 1 can be inserted between the fixed tasks numbered 1 and 3, or between the fixed 
tasks numbered 6 and 7. This lack of consecutiveness comes from the compatibility condition of 
the tasks. 

It can be shown that the usual line balancing problem can be considered as a special case of 
the current problem. Suppose an instance of a usual line balancing problem is given with a 
precedence diagram G (for example, see Fig. 2). Further, let 0 and m be the dummy tasks 

Fixed Tasks Float Tasks 

Range 

(I.3), (6,7) 

Incom 

F-1 
lncom 

Fig. 1. An example of the line balancing problem. 
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Fixed Tasks Float Tasks 
Range 

7r7 

(a) Precedence diagram (b) Transformed instance 

Fig. 2. Transformation of usual line balancing problem into LBP. 

representing the start and end of assembly, respectively. Since the graph G is acyclic, the longest 
(0, m)-path (in terms of the number of edges) in G can be computed easily. Let the set of tasks 
on the path be M, which is viewed as a set of fixed tasks. For example, in Fig. 2, M = { 1,2,4}. 
Now for each task not in M (that can be thought as a float task), it is easy to define the set of 
ranges in terms of fixed tasks where it can be assigned. Note that, in this case, the set of ranges 
for each float task consists of exactly one range. Otherwise, there should exist a cycle in G. Now 
by defining the remaining precedence constraints on the set of float tasks as specified in the original 
precedence diagram, an instance of the current line balancing problem can be obtained. 

In this paper, an efficient heuristic procedure based on the neighborhood search technique is 
presented. For a given feasible solution, an improved solution is generated by solving two 
subproblems. The first subproblem aims at redistributing the float tasks while preserving a given 
assignment of the fixed tasks. The second subproblem aims at reoptimizing the assignment of the 
fixed tasks while preserving the current relative sequence of the float tasks. More explanations on 
the subproblems will be given in the following sections. Procedures to solve each subproblem are 
proposed, which are based on network theories. Then a solution procedure for (LBP) is developed, 
which iteratively calls the algorithms for the two subproblems. 

3. TWO SUBPROBLEMS 

This section presents some notations which will be used later. Then two subproblems of (LBP) 
which are used in developing the solution procedure are presented. For simplicity of presentation, 
the partial precedence constraints on the set of float tasks will be ignored until Section 7. 

3.1. Notations 

M = {1 . . . . .  m}: the set of fixed tasks 
N = {1 . . . . .  n}: the set of float tasks 
W =  {1 . . . . .  w}: the set of workstations 

pi: the processing time of the fixed task i ~ M 
aj: the processing time of the float task j ~ N 
C: current cycle time 

Given a feasible assignment of the fixed tasks, the following notations are used. 

W(k): the set of fixed tasks assigned to the workstation k e W 
B(j): the set of  workstations to which the float task j can be assigned, for j e N 
A(k): the set of float tasks which can be assigned to the workstation k e W 
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Note that B(j) and A(k)  can be found using the range constraints and the given assignment of 
the fixed tasks. 

3.2. Subproblem I 

For a given feasible solution of (LBP), subproblem 1 (Subl) is used to find an improved solution 
by changing the assignment of float tasks while preserving the current assignment of fixed tasks. 
The objective of (Subl) is to determine whether the float tasks can be assigned into the workstations 
within the predetermined cycle time C while a feasible assignment of the fixed tasks is given. Here, 
feasibility implies that the assignment of the fixed tasks satisfies the incompatibility constraints. 
The number of workstations is also predetermined. Note that by iteratively solving (Subl) with 
varying the cycle time C, the assignment of float tasks that minimizes the cycle time can be found. 

3.3. Subproblem 2 

Similarly to (Sub1), for a given feasible solution of (LBP), subproblem 2 (Sub2) is used to find 
an improved solution by changing the assignment of the fixed and float tasks while preserving the 
relative order on the float tasks present in the given solution. (Sub2) is to find an assignment of 
both fixed and float tasks to workstations which minimizes the number of workstations needed 
while a predetermined cycle time C is given. Here a linear precedence on all the float tasks is 
additionally imposed. The linear precedence specifies the order in which the float tasks are 
performed. 

4. ANALYSIS OF THE TWO SUBPROBLEMS 

This section presents analysis on the two subproblems presented in Section 3. 

4.1. Subproblem 1 

(Subl) can be viewed as a generalized bin packing problem where the set of workstations 
corresponds to the set of bins and the set of float tasks corresponds to the set of items to be inserted. 
Since the bin packing problem is NP-complete [7], (Subl) is NP-complete in general. The bins 
(workstations) in which each item (float task) can be inserted are restricted depending on the range 
constraints. In addition, the sizes of bins are not uniform since they depend on the given assignment 
of the fixed tasks. Many heuristics have been proposed for the bin packing problem, and for some 
of them worst case performance bounds have been derived. See Garey and Johnson [7], for details. 
Friesen and Langston [8] analyse algorithms for a problem with different bin sizes. However, these 
algorithms cannot be applied to (Subl) since there exist restrictions on the bins for an item to be 
inserted. In this section, a new algorithm based on the transportation problem is presented. 

The following problem is a (continuous) relaxation of (Subl). 

(TP) min ~ x j ,  
j =  Ik ~ B(j)  

s.t. ~ xjk = a~ 
k = l  

n 

Xjk + Sk = bk 
/ =  I 

XJ~ >t0 
sk~>O 

for all j e N 

for all k E W 

for a l l j e N ,  k e  W 
for all k e IV, 

where bk = C - ~ wlk~pJ. 
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Note that the above problem can be viewed as a transportation problem (TP). For an example 
of (TP), see Fig. 3. In Fig. 3, the assignment of the fixed tasks is given and from this, the set of 
workstations to which each float task can be assigned is determined. For example, for the float 
task 1, since the range attached to it is (1,10), it can be assigned to the workstation 1, 2, or 3, where 
at least one fixed task in the range is assigned. The bold lines represent valid assignments and dotted 
lines represent invalid assignments, that is, assignments to the workstations at which the float task 
cannot be done. 

In (TP), xjk represents the amount of the processing time of the float task j allocated to the 
workstation k and sks are slack variables. The objective function represents the amount of the 
processing time allocated to the invalid workstations, that is, the workstations to which the float 
task cannot be assigned. Therefore (Subl) is to find a solution to (TP) with the objective value 
0. Such a solution should minimize the objective function of (TP), since for any feasible solution 
to (TP), the objective value is non-negative. 

If (Subl) has a feasible solution, then the solution is an optimal solution of (TP) and the optimal 
objective value is 0. On the other hand, if (TP) has an optimal solution whose objective value is 
greater than 0, (Subl) is infeasible. So a necessary condition for (Subl) to be feasible is that (TP) 
has an optimal solution whose objective value is 0. Suppose the necessary condition holds. If the 
optimal solution gives an actual assignment of the float tasks to the workstations, it is a feasible 
solution of (Subl). The actual assignment can be deduced from the solution only when for each 
j, xjks are all zero except for one k. Then the float task j can be assigned to the workstation k. 
This case occurs when there exists an optimal basic feasible solution of (TP) which has all the slack 
variables as basic variables. The following proposition summarizes the above remarks. 

PROPOSITION 1. 

(1) I f  (Subl) is feasible, then the optimal objective value of (TP) is O. 
(2) I f  the optimal objective value of (TP) is greater than O, then (Subl) is infeasible. 
(3) The necessary and sufficient condition for (Sub l) to be feasible is that the optimal value of (TP) 

is 0 and there exists an optimal basic solution which has all the slack variables as basic variables. 
Proof. (1) and (2) are clear from the above discussion. Only (3) needs to be proved here. Suppose 

the optimal objective value of (TP) is 0 and there exists an optimal basic solution which has all 

Float tasks Workstations 

Range Fixed tasks assigned 

(1,10) [I-5] 

(2,10) 

(7,14) 

(7,15) 

(3,12) 

(13,18) [16-20] 

Cost = 0 

. . . . . . . . . . . . . .  Cost = I 

[6-81 

[9-121 

[13-15] 

Fig. 3. Construction of (TP). 
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the slack variables as basic variables. Any basic solution of (TP) corresponds to a spanning tree 
of the (complete) bipartite graph induced by N w {s} and W, where s is the slack node. So the 
number of basic variables is n + w. Since there are w slack variables and all of them are basic, 
only n of the variables x~k are basic. Hence only one of the variables xjk for each j should be basic. 
Using the solution, the actual assignment can be obtained. On the other hand, if (Subl) is feasible, 
the variables corresponding to the feasible assignment together with all the slack variables give an 
optimal basic solution to (TP). 

From (3) in Proposition l, it can be deduced that (Subl) is equivalent to the problem of finding 
an optimal basic solution whose objective value is 0 and where the slack variables are basic 
variables in the greatest possible extent. Not surprisingly, the latter problem is also 
NP-complete [9]. Therefore, it is unlikely that there exists a polynomial time algorithm to solve it. 
In the next section, a heuristic procedure to solve the problem is presented, which is based on the 
concept of augmenting paths. 

4.2. Subproblem 2 

Like (Subl), (Sub2) can also be viewed as a type of bin packing problem. In this case, the set 
of both the fixed tasks and the float tasks is the set of items to be inserted. However, in contrast 
to (Subl), (Sub2) can be solved in polynomial time by a shortest path algorithm. 

Let us assume that by renumbering the task numbers, if necessary, the set of float tasks N is 
{1 . . . . .  n} and a tentative linear order is given from the task 1 to n. Let us construct a directed 
graph G = (V, A) as follows. Let V be given as the set {[/j][i ~ M, j ~ N} w {[0,0]}. An arc 
([i~j~],[i2j2]) exists if, and only if, the set of the tasks {i~ + 1 . . . . .  /2} w {j~ + 1 . . . . .  j2} can be assigned 
to the same workstation while neither exceeding the cycle time C nor violating the incompatibility 
constraints. In the preceding remark, if i~ -- i2 orj~ = j2, the corresponding set should be interpreted 
as empty. 

Now suppose a shortest path from the node [0,0] to the node [re,n] be given. Let the path be 
given as [0,0]-*[iiji]--* . . .  ~[ipjp], where [ipjp] = [m,n]. Then if the set of tasks {i,_~ + 1 . . . . .  
i,} u {j,_ ~ + 1 . . . . .  j,} is assigned to the workstation t, the assignment gives an optimal solution 
to (Sub2). Since the number of the nodes is mn, the shortest path can be found in polynomial time. 

PROPOSITION 2. (Sub2) can be solved in polynomial time. 
Though the optimal assignment can be found by solving the corresponding shortest path 

problem, it is not practical to construct the graph G beforehand and then use the shortest path 
algorithm on G since a large memory is needed to store the information of G in a computer. In 
the next section, an algorithm is presented which successively generates the necessary part of the 
graph as the algorithm progresses. 

5. SOLUTION METHOD FOR THE SUBPROBLEM l 

As noted in Section 4.1, (Subl) is equivalent to the problem of finding an optimal basic solution 
of (TP) whose objective value is 0 and which has slack variables as basic variables as many as 
possible. (Subl) is feasible only when the resulting solution of (TP) has all the slack variables as 
basic variables. Let us call an optimal basic solution of (TP) an improvement over the other optimal 
basic solution, if the number of basic slack variables in the former is greater than that in the latter. 
In this section, a heuristic algorithm (called slack pivoting procedure) is presented which improves 
the current optimal basic solution of (TP) by pivoting the non-basic slack variables into the basis 
if possible. 

If (TP) has the optimal value greater than 0, (Subl) is infeasible. Therefore, in the following, 
it is assumed that the optimal value of (TP) is 0 and an optimal basic solution (x~,s j) is given. (TP) 
can be solved by any standard algorithm for the transportation problem (e.g. see [10]). If all the 
slack variables are basic variables, then a feasible assignment can be found. Hence let us assume 
that there exists at least one non-basic slack varable, say s~. If the variable sj is pivoted into the 
basis, there occurs a unique cycle in the subgraph of G induced by the arcs corresponding to basic 
variables [see Fig. 4(b)]. Let the cycle be D. Let us label each arc alternately by the signs + and 
- starting from the arc corresponding to st which is labeled + [see Fig. 4(b)]. The signs on the 
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Float tasks Workstations 

Processing Capacity 
time 

0 G ',o).@ 
20 ( ~  25 

10 

25 25 

55 
20 

34 

24 
18 

20 1 7 ~ 5 0  25 

(22) 

(a) An optimal solution of (TP) 
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Float tasks 
Processing 

time 10 
10 

20 

25 

34 

18 . . .  

20 ~ .'"1 O+ 

(22) 

Workstations 
Capacity 

Float tasks Workstations 
Processing Capacity time __@ ilo~,@ 20 20 I0 

25 20 ~ 25 
-- \ 

I0 

25 25 

55 55 
20 

34 
14 

24 24 
18 

25 20 25 

(22) 

(b) Labeling (C) An improved solution found 

Fig. 4. Slack pivoting procedure. 

arcs in the cycle indicate whether the flows on each arc should be increased or decreased to conserve 
the flows on the nodes when the flow on sj is int reased. Note that an improvement upon the current 
solution is possible if min {x~,s~,l(id),(s,k)~ D and labeled by the sign - }  is attained at the x 
variable [e.g., x ,  in Fig. 4(b)]. If this happens, sj can be pivoted into the basis, which results 
in an improved solution (x2,s 2) [see Fig. 4(c)]. If not, the procedure fails and then try another 
non-basic slack variable, if any. Note that the pivot is not performed if it increases the objective 
value. The procedure is continued on all non-basic slack variables until no further improvement 
is possible. 
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At the end of the procedure, if the final solution has all the slack variables as basic, (Subl) is 
solved. Otherwise, try to construct a feasible solution of (Subl) from the final solution of (TP) using 
a heuristic procedure. The procedure is described as follows. 

5. I. Feasible solution construction procedure (FSCP) 

Suppose the final solution obtained at the end of the slack pivoting procedure is given as (x*,s*) 
and there exists at least one float task whose processing time is divided and allocated to at least 
two different workstations. Let P be the set of such float tasks. (FSCP) determines an actual 
assignment of the float tasks in P. 

First, a proposition on the cardinality of P is given. 

PROPOSITION 3. IPI ~< w 

Proof. The number of basic variables in (TP) is n + w. Let p be the cardinality of P. Then 
(number of the basic variables) = n + w >/2p + (n - p) = n + p. Hence the relation holds. 

Now consider the following problem (MP(C)). 

(MP(C) )  min max, ~ wjkyjk 
j e P  

yjk = 1 for a l l j e P  
k ~ B(l") 

y~k ~< 1 for all k e W 
A(k)np 

yjk ~ {0,1} for a l l j e  P, k e  W 

where wjk = max(0,aj + ~,E~,~a, - C) and Q(k) = W(k) w {i ~ N~PIx~k = a,}. 

Note that W(k) is the set of the fixed and float tasks which are already assigned to the 
workstation k. wjk is the amount of increment over the current cycle time C if the float task j is 
assigned to the workstation k. 

(MP(C)) determines the assignment of the float tasks in P to the workstations so that the 
maximum increment over the current cycle time C is minimized. It can be viewed as a minmax 
matching problem and can be solved efficiently [11]. The following proposition shows that (MP(C)) 
always has a feasible solution. 

PROPOSITION 4. (MP(C)) always has a feasible solution. 
Proof. Can be proved by using Proposition 3 and the Hall's theorem I11]. The proof is omitted 

here. 
If the optimal objective value of (MP(C)) is 0, the optimal solution of (MP(C)) provides a feasible 

solution of (Subl). Although this may not happen, the procedure can be used to obtain a solution 
which is close to a feasible solution. 

6. SOLUTION METHOD FOR THE SUBPROBLEM 2 

As noted in Section 4.2, (Sub2) can be solved in polynomial time by the shortest path algorithm. 
However, as noted earlier, large computer memory is needed to store the graph explicitly. So 
instead of generating the graph completely beforehand, only the needed portion of the graph is 
generated as the algorithm progresses. Note that Dijkstra's algorithm for the shortest path 
problem [11] can be implemented without storing the graph completely if the information needed 
can be supplied at the various stages of the algorithm (by any method). Since the graph G has a 
special structure (it does not have a cycle), it is easy to construct the set of nodes which are adjacent 
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to the set of nodes currently considered. More storage saving is possible if only the maximal nodes 
are generated. Here, the maximality means the following. Suppose the node considered currently 
is [ij]. Then the node [i'j '], where i' > / i j '  i> j ,  is maximal with respect to [ij] if the set of the tasks 
T = {i + 1 . . . . .  i'} w {j + 1 . . . . .  j '} can be assigned to the same workstation without violating the 
incompatibility constraint, but neither T w  {i' + 1} nor T u  {j' + 1} can have such property. 

Hence by using the above scheme, (Sub2) can be solved with less memory requirements. 

7. THE SOLUTION ALGORITHM 

By combining the solution algorithms for (Subl) and (Sub2), a heuristic algorithm for the line 
balancing problem is developed. The following is the procedure. 

7. I. Line balancing heuristic(LBH) 

(Step 0) Get an initial solution. Let the resulting cycle time be Co. k = 1. 
(Step k) 
1. Phase I 

i. Set Cu = Ck-~. Fix the assignment of the fixed tasks as the solution at step k -  1. 
ii. Using the binary search technique on the cycle time C e [CL,Cu], find the minimum C* such 

that (TP) has an optimal solution whose objective is 0. If all the slacks are basic, go to v. 
iii. Do the slack pivoting procedure. If all the non-basic slacks are pivoted into the basis, go 

to v. 
iv. Do (FSCP). 
v. Let the resulting assignment be A. Construct a feasible linear precedence on the set of float 

tasks from A. 
2. Phase H 

i. Set Cu to the value rain {Ck_ ~, CPha~x} --0.1, where Cpha~ is the final cycle time obtained 
in Phase I. 

ii. Using the binary search technique on the cycle time C ~ [CL,Cu], find the minimum cycle 
time C* such that (Sub2) has a feasible solution (with cycle time C*) which requires no 
greater than w workstations. If such C* exists, set Ck to C*, increment k, and go to (step 
k). If not, go to (step F). 

(Step F) Do post improvement procedure. 
CL is the lower bound on the cycle time which is set to the minimum value between the maximum 

processing time and the value obtained by dividing the sum of the processing times by the number 
of workstations. (LBH) solves the problem by iteratively using the algorithms for (Subl) and 
(Sub2). Phase I uses the solution methods developed to solve (Subl). Phase II uses those developed 
to solve (Sub2). The result of Phase I is used as an input to Phase II and vice versa. Note that 
the final solution obtained at Phase II is no worse than the solution obtained at Phase I. (LBH) 
can be viewed as a kind of (somewhat complicated) neighborhood search algorithm, where Phase 
I generates a neighborhood (in terms of the linear precedence on the set of float tasks) and Phase 
II finds a local optimal solution in the neighborhood. The following describes some details of 
(LBH). 

7.2. Initial solution 

A feasible solution is found by using the modified bin packing method, where the set of 
workstations corresponds to the set of bins and the set of fixed and float tasks corresponds to the 
set of items to be packed. Given the current packed items, the items that can be packed in each 
bin are identified reflecting the constraints on the tasks. Then choose the item to be packed next 
using the First Fit Method [7]. 

7.3. Constructing linear precedence on the set o f  float tasks 

At (v) in Phase I, a feasible linear precedence on the set of float tasks is constructed by scanning 
the assignment A. Since A is a feasible assignment, by considering the set of float tasks assigned 
to the same workstation from the workstation 1 to w, a feasible linear precedence can be found. 
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Table 1. Problem characteristics 

Problem w* m t  n:~ imc-l§ pre¶ imc-2ll 

1 37 72 66 19 15 2 
2 37 74 63 20 I1 2 
3 37 74 65 18 9 2 
4 35 72 62 23 10 4 
5 35 74 61 20 14 3 
6 33 74 61 20 I1 3 
7 33 70 60 22 15 2 

*Number of  workstations. 
tNumber  of  fixed tasks. 
:~Number of  float tasks. 
§Number of  incompatibility constraints on the fixed tasks. 
¶Number  of  precedence constraints on the float tasks. 
rlNumber of  incompatibility constraints on the float tasks. 

7.4. Post improvement procedure 

In (Step F), the possibility is checked whether a float task can be moved to the other workstation 
without increasing the current cycle time. If such a movement is possible, a feasible linear 
precedence on the set of float tasks is constructed using a method similar to the one used at (v) 
in Phase I, then Phase II is performed subsequently. The procedure is repeated until no 
improvement upon the current cycle time is possible. 

7.5. Some complications 

As noted in Section 1, there may exist additional constraints on the set of float tasks. There may 
be partial precedence on the set of float tasks and incompatibility condition on some pairs of float 
tasks. In these cases, the algorithm proposed in Section 6 should be modified. Here, some possible 
modifications are presented. 

In Phase I, if there exists the above-mentioned constraints, the final assignment can be infeasible. 
To guarantee feasibility, the algorithm can be modified to consider only the subset of the float tasks 
for which no additional constraints are present. The float tasks with additional constraints are fixed 
to the workstations determined in the previous step. 

In Phase II, the graph construction procedure should be modified to guarantee feasibility. So, 
when generating maximal nodes, the additional conditions should be checked and this can be easily 
implemented. 

8. C O M P U T A T I O N A L  R E S U L T S  

The proposed algorithm is coded in C language and it is tested using real world data found in 
a company manufacturing electric washers. Table 1 shows the characteristics of the test problems. 
Usually, the number of workstations varies between 33 and 37 according to the conditions of the 
line. The number of fixed tasks is about 72 and that of float tasks is about 63. These and other 
numbers reveal typical characteristics of the line balancing problem that should be solved in this 
company. 

Table 2 shows computational results. The lower bound on the cycle time (CL) is calculated simply 
via the following. 

CL : max{maxi, Mpi,maxj~ Naj,( ~, p~ + ~ aj)/w}. 
i e M  j E N  

Table 2. Test results 

Problem Itrn* CLt C~t Error~ 

I 7 33 33 0.0 
2 8 33 34 3.0 
3 l0 30 30.7 2.3 
4 9 33 35 6.1 
5 9 33 33 0.0 
6 8 33 39 18.2 
7 l0 37 41 10.8 

*Number of  iterations. 
tLower  bound on the cycle time. 
~Cycle time obtained. 
§Relative error = ( C  - CL) /CL X 100 ( % ) .  
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Though the lower bound obtained as above may be very poor in some cases, the algorithm could 
find solutions with small relative errors. 

Since the problem is new, it is not possible to compare the performance of the algorithm to other 
methods. However, the relative errors shown in Table 2 are rather small and it seems that the 
solutions obtained by the algorithm are near optimal solutions. Previously, the problem was solved 
manually, which requires several hours. The problem should be solved when a new model is 
introduced or some changes in the workspace occur. The quality of the solutions obtained by the 
algorithm seems comparable to the solutions obtained manually, or even improves it. Usually, the 
computing time requires only a few minutes on a HP715 workstation. 

9. CONCLUDING REMARKS 

This paper presents a new type of line balancing problem which has practical applications. An 
efficient heuristic procedure, which is based on some well known network algorithms, is proposed 
to solve the problem. The heuristic procedure developed is a type of the neighborhood search 
procedure and an improved solution is constructed by solving two subproblems. One of the 
subproblems is a generalized bin packing problem for which no algorithms have been presented 
in the literature. An efficient heuristic based on network theories is proposed for the problem. For 
the other subproblem, it is shown that it can be solved within polynomial time bound by a shortest 
path algorithm. 

The line balancing problem presented in this paper has many practical applications in its form, 
but a few refinements can make it possible to apply the model to other situations. For example, 
parallel workstations consisting of two or more workers can be found in many cases. Further 
research issues include the extension of the model including such situations and development of 
optimal algorithms for the models. 

A full system which incorporates graphic user interface is developed and successfully installed 
at the line. Besides providing good solutions when needed, the system can also be used to evaluate 
several possible alternatives in the process design, which is nearly impossible when the manual 
procedure is used. 

In addition to the increased production rate, a side benefit was obtained using the system. The 
company operates a system monitoring the quality of the assembled products. The authors were 
told by the company that the defect rate of the products has decreased after applying the system. 
The company regarded at least part of this phenomenon can be attributed to the use of a new line 
balancing system. This side effect was not envisioned by the authors before the system is used and 
little has been reported on the relationship between the line balancing and product qualities in 
previous researches. One possible explanation on this phenomenon is that the new system can find 
a solution which strictly observes the restrictions imposed on the problem while a line designer may 
find a solution manually that violates some of the constraints for the sake of smaller cycle time 
and ease of finding the solution. A typical example of the constraints that can be disregarded by 
a line designer in finding a solution manually involves fuses. If there are two fuses of different 
capacities to be inserted, it is desirable that the insertion of the fuses be performed by two different 
workers. If a worker inserts both fuses, he may mistakenly insert the fuses in the wrong place. 
According to the line manager, this kind of error rarely happens, but it does occur. Also the task 
of inserting a fuse can be defined as tasks (1) inserting the fuse and (2) inspection and close the 
lid. It is desirable that these two tasks are performed by two different workers. If a worker performs 
both tasks, he may mistakenly close the lid without inserting the fuse and the next worker cannot 
confirm if the fuse has been properly inserted since the lid is already closed. These kind of 
constraints are not critical for the assembly, but are desirable to observe. But finding a good 
solution manually, reflecting all these constraints, is not an easy task for a line designer and the 
line designer may disregard some of the constraints, which can result in quality problems. 

REFERENCES 

1. Jackson, J. R., Computing procedure for a line balancing problem. Management Science, 1956, 2, 261 271. 
2. Baybars, I., A survey of exact algorithms for the simple assembly line balancing problem. Management Science, 1986, 

32, 909-932. 



332 Kyungchul Park et al. 

3. Talbot, F. B., James, H. P. and Gehrlein, W. V., A comparative evaluation of heuristic line balancing techniques. 
Management Science, 1986, 32, 430-454. 

4. Johnson, R. V., Optimally balancing large assembly lines with 'FABLE'. Management Science, 1988, 34, 240-253. 
5. Hoffman, T. R., Eureka: a hybrid system for assembly line balancing. Management Science, 1992, 38, 39-47. 
6. Johnson, R. V., A branch and bound algorithm for assembly line balancing problems with formulation irregularities. 

Management Science, 1983, 29, 1309-1324. 
7. Garey, M. R. and Johnson, D. S., Computers and Intractability. W. H. Freeman, San Francisco, CA, 1976. 
8. Friesen, D. K. and Langston, R. L., Variable sized bin packing. SIAM Journal on Computing, 1986, 12, 60-70. 
9. Murty, K. G., Linear Complementarity, Linear and Non-Linear Programming. Heldermann, Berlin, 1988. 

10. Murty, K. G., Linear Programming. Wiley, New York, 1983. 
I I. Bondy, J. R. and Murty, U. S. R., Graph Theory with Applications. Elsevier, Amsterdam, 1976. 


