EUROPEAN

JOURNAL
: OF OPERATIONAL
el RESEARCH
ELSEVIER European Journal of Operational Research 91 (1996) 528-542

Theory and Methodology

Joint price and lot size determination under conditions
of permissible delay in payments and quantity discounts
for freight cost

Seong Whan Shinn 2, Hark Hwang >*, Sung Soo Park °

2 Department of Business Administration, Semyung University, Sinwol-dong, Jecheon 390-230, South Korea
b Department of Industrial Engineering, Korea Advanced Institute of Science and Technology, 373-1 Gusung-dong, Yusung-gu,
Taejon 305-701, South Korea

Received September 1993; revised December 1994

Abstract

This paper deals with the problem of determining the retailer’s optimal price and lot size simultaneously under
conditions of permissible delay in payments. It is assumed that the ordering cost consists of a fixed set-up cost and a
freight cost, where the freight cost has a quantity discount offered due to the economies of scale. The constant price
elasticity demand function is adopted, which is a decreasing function of retail price. Investigation of the properties of
an optimal solution allows us to develop an algorithm whosc validity is illustrated through an example problem.
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1. Introduction

In deriving the economic order quantity (EOQ) formula, it is tacitly assumed that the retailer must
pay for the items as soon as he receives them from a supplier. However, in practice, a supplier will allow
a certain fixed period (credit period) for settling the amount the retailer owes to him for the items
supplied.

Recently, a number of research articles appeared which deal with the EOQ problem under a fixed
credit period (Goyal [4], Haley and Higgins [6]). With the average cost approach, they reported that the
EOQ is invariant to the length of credit period. This is not consistent with our expectation. This
inconsistency is resulted by the assumption commonly held by the previous research works in which the
demand for the product is treated as a given constant. Consequently, they disregarded the effects of
credit period on the quantity demanded. As implicitly stated by Mehta [10], a major reason for the
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supplier to offer a credit period to the retailers is to stimulate the demand for the product he produces.
The supplier usually expects that the profit increases due to rising sales volume can compensate the
capital losses incurred during the credit period. The positive effects of credit period on the product
demand can be integrated into the EOQ model through the consideration of retailing situations where
the demand rate is a function of the selling price the retailer sets for the product. The availability of the
credit period from the supplier enables the retailer to choose the selling price from a wider range of
option. Since the retailer’s lot size is affected by the demand rate of the product, the problems of
determining the retail price and the lot-size are interdependent and must be solved simultaneously (we
will call this the RPLS problem). Kunreuther and Richard [8] dealt with the RPLS problem when
demand is a linear function of price and when the supplier offers no quantity discounts. Abad [1] dealt
with the same problem assuming that the supplier offers all-unit quantity discounts and demand for the
product is a decreasing function of price. Abad [2] also extended his model to the case of incremental
quantity discounts.

This paper deals with the RPLS problem when the supplier offers a certain credit period and the
demand of the product is represented by a constant price elasticity function. It is also assumed that the
ordering cost of the retailer contains not only a fixed cost but also a freight cost which is a function of the
lot-size. In many practical situations, the order may be delivered in unit loads, i.e., trucks, containers,
pallets, boxes, etc. and a quantity discount may occur in terms of the number of unit loads due to the
economy of scale. The classical quantity discount EOQ model has been extensively studied in the
literature (Das [3], Tersine et al. [11], Hadley and Whitin [5], and Johnson and Montgomery [7]). Noting
that all these quantity discount models analyze solely the unit purchase price discount, Lee [9] studied
the EOQ model with set-up cost including a fixed cost and freight cost where the freight cost has a
quantity discount.

In the next section, we formulate two kinds of mathematical models: 1) optimal lot sizing policy model
with price predetermined and 2) optimal pricing and lot sizing policy model. For each model, the
properties of an optimal solution are discussed and solution algorithm is given in Section 3. Numerical
examples are provided in Section 4, which is followed by concluding remarks.

2. Development of the model

The assumptions of this study are essentially the same as the EOQ model except for the conditions of
permissible delay and the constitution of ordering cost.
The following assumptions and notations are used:

1) The demand rate is represented by a constant price elasticity function of retail price.

2) No shortages are allowed.

3) The supplier proposes a certain credit period and sales revenue generated during the credit period is
deposited in an interest bearing account with rate 1. At the end of the period, the credit is settled and
the retailer starts paying the capital opportunity cost for the items in stock with rate R (R > I).

4) The retailer pays thé freight cost for the transportation of the quantity purchased where the freight
cost has a quantity discount.

: Annual demand rate, as a function of retail price (P); D = KP ¢,
: Scaling factor (> 0).
Index of price elasticity (> 0).
: Unit retail price.
: Unit purchase cost.
: Order size.

QO ®xT
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: j-th freight cost break quantity, j =1, 2,...,n, where Ny <N, < --+ <N, <N, ,, with N;=0 and
Nn+l = o,
Fixed ordering cost.

: Freight cost for Q, N;,_, <Q <N,, where F,_, <F,; and F,_/N,_>F;/N;, j=1,2,...,n.
Credit period set by the supplier.

: Inventory carrying cost, excluding the capital opportunity cost.

: Capital opportunity cost (as a percentage).

Earned interest rate (as a percentage).

ST Tm o

Note that the inequalities F,_; <F; and F;_;/N,_, > F;/N; are necessary to have some quantity
discount in the freight cost for changing the order size from N,_; to N,. Thus the cost for setting an
order becomes S + F, for N,_; <Q <N,

The retailer’s objectlve 1s to max1mlze the annual net profit II(P, Q) from the sales of the products.
The annual net profit consists of the following five elements:

1) annual sales revenue = DP;

2) annual purchasing cost = DC;

3) annual inventory carrying cost = 3QH;

4) annual ordering cost = D(S + F))/Q, for N,_; <Q <Nj;

5) annual capital opportunity cost (refer to Goyal [4D): ) Case 1: Dt < Q (see Fig. 1a). As products are
sold, the sales revenue is used to earn interest with annual rate I during the credit period ¢. And
the average number of products in stock earning interest during time (0, ¢) is 1Dt and the interest
earned per order becomes 3Dt - tCI. When the credit is settled, the products stlll in stock have to
be financed with annual rate R. Since the average number of products during time (¢, Q/D)
becomes +D(Q /D — t), the interest payable per order can be expressed as iD(Q/D —tXQ/D —
t)CR.

Therefore,

annual capital opportunity cost
_ 3:D(Q/D—1)(Q/D—1)CR~ (3Dt)-1CI  D’C(R -1)e? . QRC
Q/D 20 2

(ii) Case 2: Dt > Q (see Fig. 1b). For the case of Dt > Q, all the sales revenue is used to earn interest
with annual rate I during the credit period t. The average number of products in stock earning interest
during time (0, @/D) and (Q/D, t) become $Q and Q, respectively.

— DCRt.

Inventory Inventory

1

level T level
0

DD - n

. HE
oD +  time

(@) De<Q ®) Dt>Q

Fig. 1. Credit period vs. Q /D.
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Therefore,

3Q(Q/D)CI +Q(t—Q/D)CI _ QIC
Q/D 2
The annual net profit II(P, Q) can be expressed as

annual capital opportunity cost = — - DCIt.

II( P, Q) = Sales revenue — Purchasing cost — Inventory carrying cost — Ordering cost
— Capital opportunity cost.

Depending on the relative size of Dt to Q, II(P, Q) has two different expressions, as follows:
Case 1: Dt < Q.

QH D(S+F) (D*C(R-I)t* QRC
Hl,j(Pa Q)—DP_DC_T— 0 - 20 + 3 — DCRt |,
Qe(N_,N], i=1,2,...,n (1)
Case 2: Dt > Q.

D(S y :
m,,(p,0)=pp—pc~ 2L _PE+E) (Q;C

> o —DCIt), Qe (N_,N], i=1,2,...,n.

(2)

The D? term in the above equations appears to be the complicating term which makes it very difficult to
find an optimal solution. For the analysis, we deal with the following two models. The solution of Model
1 is to be utilized in deriving an algorithm for Model 2.

Model 1: optimal lot sizing policy model with price predetermined. Retail price is assumed to be already
set by the retailer and represented by P". Under this model, the demand becomes constant and so the
annual net profit function becomes a single variable problem of maximizing IT(P°, Q).

Model 2: optimal pricing and lot sizing policy model. Some retailers make pricing decision on the basis
of the projected demand for their product. In this sense, the decisions with respect to price and order
size represent plans rather than irrevocable commitments. Also, the availability of the credit period from
the supplier tends to widen the feasible price range from which the retailer can choose an optimum retail
price. Hence, in this model the pricing and lot sizing problems are considered simultaneously.

3. Determination of optimal policy
3.1. Model 1

The problem is to find an optimal lot size Q* which maximizes IT(P°, Q). For the normal condition
(R =) as stated by Goyal [4], I, j(PO, Q) is a concave function for every i and j. And so, there exists a
unique value Q, ; which maximizes I, (P°, Q) which is given by

Q.= \/2D(Sl +F)/H,, (3)
where ), =S+ $DC(R —I)t? and H,=H + CR, and

0,;= ]/ZD(S +F)/H,, 4
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where H,=H + CI.
Q;; and Hi,j(PO, Q) can be shown to have the following properties.

Property 1. Forigiven, Q; ;<Q,;v, J=1,2,...,n—1
Property 2. Forany Q, II, (P°, Q)>1I,;, (P°, @), i=1,2; j=1,2,...,n— L.

Property 1 indicates that the value of both Q, ; and Q, ; is strictly increasing as j increases. Property 2
implies that both Hl’j(PO, Q) and II, (P°, Q) are strictly decreasing for any fixed value of Q as j
increases. Since our problem structure satisfies these two properties, we are able to adopt the results of
Lee [9] in developing the solution algorithm of Model 1. Now, we present two theorems, one for Case 1
and the other for Case 2. Based on these theorems, we only need to consider a finite number of
candidate values of Q in finding an optimal value Q*.

Theorem 1 (for Case 1). Suppose Dt belongs to (N,_,, N,] for some a. Let b be the largest index such that
Q10> N, where Q,,=2DS,/H, . Also, let ¢ be the larger value of a and b, and k (k > c) be the first
index such that Q, ; < N, respectively.
(i) If the index k (< n) exists and Q, , <Dt, then Q* must be less than Dt.
(ii) If the index k (< n) exists and Q, , > Dt, then we have to consider Q =N, N_.y,..., Ny_y, Oy only
as candidates for Q*.
(iii) If Q,,> N; for all ¢ <j <n, then we have to consider Q =N,, N, ,,,..., N, as candidates for Q~.

Theorem 2 (for Case 2). Suppose Dt belongs to (N,_,, N,] for some a. Let b be the largest index such that
Q,0> N, where Q,,=2DS/H,, and k (k> ) be the first index such that Q,, <N, respectively.
(i) If N, = Dt;-N,_, becomes the only candidate for Q" .
(ii) If the index k (< a) exists and Q,; < Dt, then we have to consider Q =Ny, Ny, ..., Ni_1, Qo as
candidates for Q~.
(i) If Q,;>N; for all b<j<a and Q,,> Dt, then we have to consider Q =Ny, Ny y,...,N,_, as
candidates for Q.

To facilitate the explanation of Theorems 1 and 2, we present Fig. 2, which shows the shape of
H,.J(Po, Q) of the example problem introduced in Section 4.1. Note that H,.J(PO, Q) in solid lines
satisfies both Properties 1 and 2. Applying Theorems 1 and 2 to the problem, it is found that
a=2,b=1,¢=2,k=3 for Case 1 (Q=>Dt) and a=2,b=1 for Case 2 (Q <Dt). Hence, the
candidates for an optimal Q are N, and Q,, for Case 1 and N, for Case 2, and the optimal lot size
becomes N, with its maximum annual net profit of $8568. The contents of (ii) and (iii) in each theorem
are essentially repetitions of Lee’s finding [9] and so we omit the proofs. The proofs for (i) are given in
the Appendix.

Based on the above theorems, we develop the following solution procedure for determining an
optimal lot size Q*.

Solution algorithm for Medel 1

Step 1. This step identifies all the candidate values Q, of Q satisfying Q, > Dt (for Case 1) and the
corresponding annual net profit II(P°, Q,).

Step 1.1. Compute Q,,=y2DS,/H, and find index b such that Q,, € (N,, Ny ,,].

Step 1.2. Find index a such that Dr € (N,_,, N,] and let ¢ = max{a, b].

Step 1.3. Compute Q, ; by Eq. (3) and find the first index k (k > c)} such that Q, ; <N,.
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Fig. 2. II,.,J.(PO, Q) of an example problem in Section 4.1.

Step 1.4. If the index k (< n) exists, then go to Step 1.5.
Otherwise, compute the annual net profit with Eq. (1) for @, =N_, N_,,..., N, and go to Step
2.

Step 1.5. 1If Q, , < Dt, then go to Step 2.
Otherwise, compute the annual net profit with Eq. (1) for Qo =N, N,,y,..., N,_,, O, and go
to Step 2.

Step 2. This step identifies all the candidate values Q, of Q satisfying Q, < Dt (for Case 2) and the
corresponding annual net profit II(P°, Q,).

Step 2.1. Compute Q,,=y2DS/H, and find index b such that Q,, € (N,, N, ,,].

Step 2.2. If N, > Dt, then compute the annual net profit with Eq. (2) for Q,=N,_, and go to Step 3.
Otherwise, compute Q, ; by Eq. (4) and find the first index k (k > b) such that Q, , <N, and
go to Step 2.3.

Step 2.3. If the index k (< a) exists and Q, , < D¢, then compute the annual net profit with Eq. (2) for
Qo=Nps Nyi1s--os Ny, Q4 and go to Step 3.
Otherwise, compute the annual net profit for Q= N,, N,,,..., N,_; and go to Step 3.

Step 3. Select the optimal lot size (Q*) among Q, found in Steps 1 and 2 which gives the maximum
annual net profit.

3.2. Model 2

In this model, we want to find (P *, Q*) which maximizes II(P, Q). Theorems 1 and 2 state that for
P = P? fixed, only the elements in set B = {N;, Q; (P%) for i=1,2 and j=1, 2,...,n} become candi-
dates for an optimal lot size Q *(P°) where Q,.,j(Pb) is obtained by substituting P with P° in Egs. (3)
and (4). Noting that some elements of B can be dropped from consideration in search of Q*(P), we
formulate the following conditions Q, (P) and N, must satisfy to become a candidate of Q *(P).
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(C-1). The conditions for Q; (P) to be a candidate of Q" (P) are:
Q,;(P)>Dt and N;_,<Q;;(P)<N, forCasel,
Q,;(P)y<Dt and N;_;<@Q,;(P)<N, forCase?2.

(C-2). The conditions for N; to be a candidate of Q*(P) are:
N>Dt and N;<Q,;(P) forCasel,

N;<Dt and N;<Q, (P) for Case?2.

(5)
(6)

(7)
(8)

For Q,(P) to be a candidate of Q*(P) in Case 1, Q, (P) must lie on (N;_,, Nj] and also
0,(P)> Dt must hold. For N, to be a candidate of Q~ (P) in Case 1, I1, (P, Q) must be increasing at
N;. In other words, the condltlons N; < Q, {P)and N, > Dt must be satisfied. The conditions for Case 2,

Eqs (6) and (8), are justified in a 51m11ar way.

Now, let us consider Q, (P)> Dt in Eq. (5). Since the demand rate D is also a function of P, the

inequality can be written as

2D(S+F)+D*C(R-I)t* .
Q,,(P) = T CR > Dt =KP™*t.

Rearranging Eq. (9),
P> (AK(H+CI)/(S+F))”
Let

P1, = (KH,t*/(S +E))’*

&)

(10)

(11)

It is self-evident that for any P > P1, the inequality Q, (P) > Dt holds. Similarly, N,_, <0, /(P)in Eq.

(5) can be rewritten as

P<P2,,
where
1/e
KC(R-1)t?
E if R>1,
P2, = { | {(S+F) +C(R-I)H,i*N?, - (S+F)
1/e .
(2K(S+E)/(H,N2))) if R=1.
Also, from Q; (P) <N, in Eq. (5), we have
P>P3,
where
1/e
KC(R-1)t? .
> if R>1,
P3,={ | (S +E) +C(R-D)H >N} — (S +F)

(2K (S +E)/(HN?)) if R=1.

(12)

(13)
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With a similar procedure, other price ranges are obtained from inequalities in Egs. (6), (7) and (8).
They are:

P<Pl;, where Pl;=(3KH,t%/(S+F))” from Q,(P) <Dr, (14)
2 1/e

P>P4;, where P4, = (2K(S+F)/(H,N?)) " from Q,,(P) <N, (15)
2 1/e

P <P5;, where PS;= (2K(S+F)/(H,N%,))” from Q, (P)>N,_,, (16)

P>P6;, where P6j=(Kt/Nj)1/e from N, > Dt. (17)

We conclude that Q, ;(P) determined with P value which satisfies all the three inequalities (10), (12)
and (13) can be a candidate of Q *(P). In other words, Q, (P) can be a candidate of Q" (P) only if P is
an element of price interval PIQ; = {P| P3; <P <P2; and P> P1}. Utilizing the price ranges in Egs.
(10)-(17), we find the following price intervals which correspond to conditions (C-1) and (C-2).

(PI-1). Price interval on which Q; ,(P) becomes a candidate for Q *(P):

PIQ;={P|P3;<P<P2;and P>P1} for Case1l, (18)

PIQ,= {P| P4, <P <P5;and P<P1} for Case 2. (19)
(PI-2). Price interval on which N, becomes a candidate for Q *(P):

PIN,= {P|P<P3;and P>P6;)} for Case 1, (20)

PIN,={P|P<P4; and P<P6;} for Case 2. (21)

The price intervals we present have a significant role in solving Model 2. We consider (PI-1) for
example. If P e PIQ), Q, /(P) satisfies condition (C-1) and becomes a candidate for Q *(P). Substituting
Q with Q; (P) in II, (P, Q), we have a problem of maximizing I, (P, Q; (P)), which is a single
variable function. Let H"(P) I, (P,Q,(P),i=1,2j=1,2,. .n. ' Note that II2(P) is valid only
on the interval P € PI1Q,. Smularly, 1f P € PIN,, then N, satisfies condmon (C-2). Substltutmg Q with N,
in IT; (P, Q), we have H AP, N), i=1,2 ] 1, 2,...,n, which is also a single variable function since
N 1s a constant. Altogether we have at most 4n smgle variable functions in the form of II; 0 (P) and

I1; (P, N)). An optimal solution (P*, Q *) which maximizes II(P, Q) is found by searching over Im2(P)
and II; (P N;), and

max II(P, Q) = m(pP), I, (P, N), 2 .(pP), , (P, N)|.
py [1(P, Q) =max| max I,(P), mex [1,(P. N). max IT,(P), max IT,,(P, N)
J J j j
(22)
Now, we are going to investigate the characteristics of Hi‘?j(P) and II, (P, N)). With Q=Q, (P) as a
function of P, the following single variable functions are obtained:

119,(P) = D{P - C(1- Re)} - 2H,D(S, + ), (23)
HZOJ(P)=D{P—C(1-1t)} —‘/2H2D(S+F}), (24)
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where j=1,2,...,n and D= KP~ ¢ Utilizing Mathematica by Wolfram [12] to obtain derivativés of
IT(P), we have

IY,(PY =D+ D{P—C(1-Re)} - D'(2S, - S + F){3H,/(D(S, + F)),, (25)

mY(PY =D+D{P~C(1-1It)} - D'/}H,(S+F)/D . (26)
Also, the second order condition for concavity is

1,(PY' = eDP~*{(e — 1) P — (e + 1)C(1 — Rt) - f,( P)} <0, (27)

I3 (P)’ = eDP~*{(e = 1) P — (e + 1)C(1 — It) — f,(P)} <0, (28)
where

P JH [(e+2)(S+E)" + (e + 1) DC:*(R— 1){3(5 + ) + DCr*(R—1)}]
’ Dla(s, + )Y |

Hye+2)*(S+F
fz(P)=\/ Sk AAASOY

For e<l, II 0(P)’ >0 and II7(P) is an increasing function of P. Thus an optimal value P;; of

II2(P) occurs at the maximum pomt of the price interval (P1Q;) corresponding to Q, (P). For ¢ > 1, it
can be shown that both fi(P) and f,(P) become positive and the second order condition is satisfied if
P < C(1 - RtXe+1)/(e —1). Note that, given the second order assumption, P, ; is the one which has the
minimum absolute value of II%(PY on the price interval (P1Q,).

Now, with Q = N;, the following results are obtained for II; (P, Q):

, D{ e(2Sl—S+Fj)>
I (P, Ny = 5 {(1=€)P+eC(1-Rt) + ——— 1}, (29)
. €D S+F
M (P, N;) = p[(e—l)P-(e+1){C(1—Rt)+ N }—fs(P)], (30)
where f3(P) = (2¢ +1)Ct*(R—-1)D/N;> 0,
, D{ e(S+F})}
(P, Ny = 5{(1-e)P+eC(A—It) + ———=1, (31)
, €D S+F,
I, ,(P, N) =-ﬁ[(e—1)P—(e+1){C(1—1t)+ o f}] (32)

For e <1, I, (P, N)) is increasing in P and for e > 1, f3(P) > 0. It can be shown that if P <C(1 —
RtXe + 1)/(e — 1) holds, IT, (P, N;) is concave. Based on these characteristics of II; (P, N;), an optimal
value P, ; of IT; (P, Nj) can be easily determined on the corresponding price interval PIN;, j=12,...,n

Note that for problem with e > 1, the algorithm is valid only when P < C(1 — RtXe + 1) /(e — 1).

Now, we present the solution procedure for Model 2.
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Solution algorithm for Model 2

Step 1. This step identifies all the candidate values Q, of Q satisfying Q, > Dt (for Case 1). For each
Q,, its optimal value P, ; is determined from the corresponding price interval.

Step 1.1. Determine P,; which maximizes Hl‘f j(P) among the following price intervals: P € PIQ; and
P <P, withQy=Q, (P), j=1,2,...,n, where P, is a given upper limit of retail price.

Step 1.2. Determine P, ; which maximizes II, (P, N;) among the following price intervals: P € PIN; and
P<P, with Qy=N,, j=1,2,...,n.

Step 2. This step identifies all the candidate values Q, of Q satisfying Q, < Dt (for Case 2). For each
Q,, its optimal value P, ; is determined from the corresponding price interval.

Step 2.1. Determine P,; which maximizes Hz‘fj(P) among the following price intervals: P € PIQ; and
P<P, with Qy =0, (P), j=1,2,...,n.

Step 2.2. Determine P, ; which maximizes IT, j(P, Nj) among the following price intervals: P € PIN; and
P<P, with Qy=N, j=12,...,n.

Step 3. Select the optimal retail price (P*) and lot size (Q *) which gives the maximum annual net
profit among those obtained in the previous steps.

Note that in this algorithm the number of calculations needed to find an optimal solution is 4#, i.e.,
(2n) X number of calculations each for Step 1 and Step 2.

4. Numerical example and sensitivity analysis

To illustrate the solution algorithms, the following problem is considered.
§=3850, K=25%10° C=$3, H=$0.1, R=0.15 (=15%), I=0.1 (=10%), ¢t =03, N,=j=500, j=
1,2,...,10, and F;=10*j*(1 —-0.02+(j—1),j=1,2,...,10.

4.1. Solution with Model 1

The optimal solution with e = 2.5 and P®= 5.7 can be obtained through the following steps:
Step 1.
Step 1.1. Since Q,,=917€ (N, N,], b=1.
Step 1.2. Since Dt =967 €(N,, N,], a =2 and let ¢ = max[2, 1]=2.
Step 1.3. Since Q,, = 1035 > N,(= 1000) and Q, ; = 1086 < N;(= 1500), k = 3.
Step 1.4. Since k (= 3) <n(= 10), go to Step 1.5.
Step 1.5. Since Q, ; > Dt, compute the annual net profit with Eq. (1) for @y =N,, O, 5.
Step 2.
Step 2.1. Since Q,, =898 € (N, N,], b=1.
Step 2.2. Since N, = 500 < Dt(= 967), Q,, = 1059 > N,(=1000) and Q,; = 1127 < N,(=1500), k = 3.
Step 2.3. Since Q,;> Dt, Qy =N, and go to Step 3.
Step 3. Since IT, ,(P°, 1000) = 8568 = max{Hl,z(PO, 1000),IT l’3(P", 1085),H2,1(P°, 500)], an optimal lot
size becomes 1000 with its maximum annual net profit $8568.

4.2. Solution with Model 2 (e > 1)

The solution procedure with ¢ =2.5 and P, = C(1 — RtXe + 1)/(e — 1) = 6.68 generates an optimal
solution (P *, Q*) through the following steps:
Step 1.
Step. 1.1. Solving Eq. (25) numerically in the price interval corresponding to Q, = Q, (P),j =1, 2,...,10,
we obtain P, ; and these results are presented in Table 1.
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Table 1

Results of Step 1

J o=0 l_j(P ) Q= N,

PePIQ;and PP, Py ; Q. AP ) PePIN;and P<P, P ; N;

1 ] - . ] - n
2 [5.83, 6.68] 5.83 999 [5.63, 5.82] 5.63 1000
3 [5.05, 6.01] 505¢2 1313 2 # - -
4 ¢ - - ¢ - -
5 g - - ) - -
6 g - - ¢ - -
7 ¢ - - g - -
8 ¢ - - ¢ - -
9 ¢ - - ¢ - -

10 # - - ¢ - -

# Optimal solution for Case 1 (Annual net profit = $8811).

Step 1.2 Solving Eq. (29) numerically in the price interval corresponding to Q, = N, j=12,...,10, we
obtain P, ; and these results are presented in Table 1.

Step 2.

Step 2.1. Solving Eq. (26) numerically in the price interval corresponding to Q, = Q, (P), j=1,2,...,10,
we obtain P, ; and these results are presented in Table 2.

Step 2.2. Solving Eq. (31) numerically in the price interval corresponding to Q, = N,j=1,2,...,10, we
obtain P, ; and these results are presented in Table 2.

Step 3. From the results in Steps 1 and 2, an optimal solution (P *, Q*) becomes (4.97, 1000) with its

maximum annual net profit $8836.

4.3. Solution with Model 2 (e < 1)

We solve the problem with P, = 300 and e = 0.5. Table 3 shows the results obtained at the end of Step
2. Note that at the end of Step 1, we have {P|P€PIQ; and P<P}= @ and {P|Pe PIN; and

Table 2

Results of Step 2

j Q=0:(P) o=V

PePIQ;and P<P, P,; QP )) PePIN;and PP, Py, N;

1 ) - - [0.0, 6.68] 523 500
2 ) - - {0.0, 5.62) 4972 1000 @
3 (4.54, 5.04) 4.96 1342 [0.0, 4.53] 4.53 1500
4 [3.76, 4.73) 4.53 1582 [0.0, 3.75] 3.75 2000
5 [3.27, 3.89] 3.76 2094 [0.0, 3.26] 3.26 2500
6 [2.91, 3.36] 3.26 2602 [0.0, 2.90] 2.90 3000
7 [2.65, 2.99] 291 3108 {0.0, 2.64] 2.64 3500
8 [2.44, 2.71] 2.65 3611 [0.0, 2.43] 243 4000
9 [2.27, 2.49) 2.44 4113 [0.0, 2.26) 2.26 4500

10 [2.13, 2.31] 2.27 4613 [0.0, 2.12] 2.12 5000

# Optimal solution for Case 2. This solution is also the global optimum with I1,,(P,,, N,) = $8836.
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Table 3

Results of the case problem with P, = 300 and ¢ = 0.5
j 0=0,/P) Q=N

PePIQ;and P<P, P, 0,{P,;) I}(P,)) PecPIN;and P<P, P, N; 1L, (P,;, N))

1 ¢ - - - [0.0, 300.0] 300.0 500 4286293
2 ¢ - - - [0.0, 300.0] 300.0 1000 4286920
3 4 - - - [0.0,300.0] 300.0 1500 4287066
4 @ - - - [0.0, 300.0}] 3000 2000* 4287092
5 @ - - - [0.0, 300.0] 300.0 2500 4287070
6  [208.6, 300.0] 300.0 2740 4287029  [0.0, 208.6] 208.6 3000 4287024
7 [129.6, 240.2] 240.2 3001 3826456 0.0, 129.6] 129.6 3500 4286964
8 [ 86.1,146.9] 1469 3501 2968635  [0.0, 86.1] 86.1 4000 4286896
9 [60.1, 96.2] 962 4001 2376267  [0.0, 60.1] 60.1 4500 4286821

10 [ 435, 66.3] 66.3 4501 1944474 (0.0, 43.5) 43.5 5000 4286737

# Optimal solution for Case 2 which also becomes the global optimum.

P<P}=@, j=1,2,...,n, for Case 1. An optimal solution (P°, Q*) becomes (300, 2000) with its
maximum annual net profit $4 287 092.

4.4. Sensitivity analysis

An interesting question is how much effect the length of credit period has on the retail price, the lot
size and the retailer’s profit. Since the problem structure of Egs. (1) and (2) does not permit sensitivity
analysis, the same example problem is solved to answer the above question. Six levels of ¢ are adopted,
t=0, 0.05, 0.1, 0.15, 0.2, and 0.3. For each level of ¢, six levels of e, ranging from 0.5 to 3.0 with an
increment of 0.5, are tested. For the problem with e < 1, P, =15, 30, 300 are examined. The results are
shown in Table 4 and the following observations can be made which are consistent with our expectations:

(i) With e > 1, as either ¢ or e increases, P* decreases.

(ii) With e > 1, as ¢ increases, P* decreases while II(P*, Q") increases.

(iii) With e <1, P* is identical with P,.

(iv) With e fixed, as ¢ increases, Q* is nondecreasing.

5. Conclusion

We have analyzed the joint pricing and lot sizing policy of a retailer in an environment in which the
retail demand of the product is a constant price elasticity function of the retail price, the freight cost has
a quantity discount and the supplier provides a certain fixed credit period for settling the amount the
retailer owes to him. _

For a retailer who benefits from the supplier’s offer of permissible delay in payments, it is not
uncommon that he lowers the retail price to a certain degree expecting that he can make more profit by
stimulating the customer demand. The ordering cost sometimes depends upon the ordering quantity,
owing to discounts allowed by a shipping company for large order. In this regard, we think that the model
presented in this paper may be more realistic for some real world problems. Sensitivity analysis with an
cxample problem generated results which are consistent with our expectations.
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Table 4
Sensitivity analysis with various values of ¢ and e
€ P, t
0 0.05 0.1 0.15 02 0.3
0.5 15 Q° 4000 4000 4500 4500 4500 4500
P 15.0 15.0 15.0 15.0 15.0 15.0
e+, Q") 771580 772837 773832 774800 775768 777705
30 Q- 3000 3500 3500 3500 3500 3500
P 30.0 30.0 30.0 30.0 30.0 30.0
mrP=, Q") 1229969 1230873 1231590 1232275 1232959 1234328
300 o 1500 1500 2000 2000 2000 2000
P 300.0 300.0 300.0 300.0 300.0 300.0
me*, Q") 4285655 4285953 4286215 4286443 4286659 4287092
1.0 15 Q 2000 2000 2000 2000 2000 2000
P 15.0 15.0 15.0 15.0 15.0 15.0
e, Q") 198 720 199 069 199 366 199620 199870 200370
30 Q- 1500 1500 1500 1500 1500 1500
P 30.0 30.0 30.0 30.0 30.0 30.0
me*,0*) 224150 224329 224490 224634 224762 225012
300 Q° 426 427 429 431 435 446
P 3000 300.0 300.0 300.0 300.0 300.0
IpP-, Q") 247266 247284 247302 247319 247336 247367
1.5 Q- 1500 1500 1500 1500 1500 1500
pP* 9.16 9.10 9.05 9.02 8.99 8.88
P, Q") 54663 54857 55031 55185 55325 55606
2.0 Q 1000 1000 1000 1500 1500 1500
P 6.14 6.10 6.06 6.00 597 592
e, Q") 20086 20228 20354 20471 20585 20797
2.5 Qo 1000 1000 1000 1000 1000 1000
P 5.11 5.08 5.05 5.02 5.00 497
e, Q") 8367 8459 8546 8627 8701 8836
3.0 Q- 500 808 825 851 877 950
P 4.68 4.60 4.57 4,53 4.51 4.47
e, Q") 3667 3722 3776 3828 3878 3971
Appendix

Proof of (i) in Theorem 1. Since Q, , <Dt and Q, ;> N,, the index k equals a. And Q,, is a maximum
point of T, ,(P°, Q), which is a concave function. Thus, IT 1.o(P°, Q) is decreasing in Q for Q > Dt and
by Property 2, we have

I, ,(P°, Dty>1, ,(P° Q) for Q=Dt (A1)
>, (P’ Q) forall v>a. (A2)

It can be concluded that Dt gives a maximum annual net profit for Q > Dt.
Also, from Eq. (3),

Q,,=y2D(S +F,) + D2)C(R—1I)t?/[H+ CR] <Dt. (A3)
Squaring both sides of Eq. (A.3) and rearranging,
»/2D(S+Fa)/(H+CI) <Dt. (A4)
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Eq. (A.4) implies that Q,,=y2D(S+F,)/(H + CI) <Dt and so II, ,(P° Q) is decreasing in Q for
Q,. <Q <Dt. Also, since the annual net profit function is continuous at Q = D,, we have

I, (P°, Dt)=II, (P Dt) <, (P°Q) forsome Q< Dt. (A5)
Therefore, if Q, , <Dt, then Q* must be less than Dt. D

Proof of (i) in Theorem 2. Since Q,,<Q,; for j=1,2,...,n, we have

Q,,>N, forany v<b. (A.6)
Note that Q,, is a maximum point of IT, (P° Q), which is a concave function. Thus,
m,,(P° N,)>1I,,(P° Q) for Qe(N,_,, N,). (A7)
Also, from Eq. (2),
o N,_,H DS N,_,IC o1
m,, (P° N,_,)=D(P-C)- 5 N —( 5 —-DCIt| - N, (A.8)
<D(P-C) - nLE_DS (N"IC —DCIt) - =1
2 N, 2 N,_,
(because N, <N, <Q,,) (A.9)
<D(P—C)—M—D—S—(N"1C—DCIt)—DF" =1,,(P° N,) (A.10)
N, 2 N, » v
(because F,_,/N,_;>F,/N,).
From (A.8), (A.9) and (A.10),
m,, (P° N,_,)<H,,(P° N,) forany v<b. (A.11)
Also, since the annual net profit function is continuous at Q = Dt, we have
m, (P°,Dt) =1I, (P°,Dt) > II, (P°,Q) for N,_,<Q<Dr. (A.12)

Therefore, if Ny > Dt and Q* <Dt,then Q* =N,_,. O
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