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Abstract 

This paper deals with the problem of determining the retailer's optimal price and lot size simultaneously under 
conditions of permissible delay in payments. It is assumed that the ordering cost consists of a fixed set-up cost and a 
freight cost, where the freight cost has a quantity discount offered due to the economies of scale. The constant price 
elasticity demand function is adopted, which is a decreasing function of retail price. Investigation of the properties of 
an optimal solution allows us to develop an algorithm whose validity is illustrated through an example problem. 

Keywords: Inventory; Credit period; Discounted freight cost; Pricing; Lot size 

1. Introduct ion  

In deriving the economic order quantity (EOQ)  formula, it is tacitly assumed that the retailer must 
pay for the items as soon as he receives them from a supplier. However, in practice, a supplier will allow 
a certain fixed period (credit period) for settling the amount  the retailer owes to him for the items 
supplied. 

Recently, a number  of research articles appeared  which deal with the E O Q  problem under  a fixed 
credit period (Goyal [4], Haley and Higgins [6]). With the average cost approach, they reported that the 
E O Q  is invariant to the length of credit period. This is not consistent with our expectation. This 
inconsistency is resulted by the assumption commonly held by the previous research works in which the 
demand for the product  is t reated as a given constant. Consequently, they disregarded the effects of 
credit period on the quantity demanded.  As implicitly stated by Mehta [10], a major reason for the 

* Corresponding author. 

0377-2217/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved 
SSDI 0377-2217(94)00357-2  



S.w. Shinn et al. / European Journal of Operational Research 91 (1996) 528-542 529 

supplier to offer a credit period to the retailers is to stimulate the demand for the product he produces. 
The supplier usually expects that the profit increases due to rising sales volume can compensate the 
capital losses incurred during the credit period. The positive effects of credit period on the product 
demand can be integrated into the EOQ model through the consideration of retailing situations where 
the demand rate is a function of the selling price the retailer sets for the product. The availability of the 
credit period from the supplier enables the retailer to choose the selling price from a wider range of 
option. Since the retailer's lot size is affected by the demand rate of the product, the problems of 
determining the retail price and the lot-size are interdependent  and must be solved simultaneously (we 
will call this the RPLS problem). Kunreuther  and Richard [8] dealt with the RPLS problem when 
demand is a linear function of price and when the supplier offers no quantity discounts. Abad [1] dealt 
with the same problem assuming that the supplier offers all-unit quantity discounts and demand for the 
product is a decreasing function of price. Abad [2] also extended his model to the case of incremental 
quantity discounts. 

This paper deals with the RPLS problem when the supplier offers a certain credit period and the 
demand of the product is represented by a constant price elasticity function. It is also assumed that the 
ordering cost of the retailer contains not only a fixed cost but also a freight cost which is a function of the 
lot-size. In many practical situations, the order may be delivered in unit loads, i.e., trucks, containers, 
pallets, boxes, etc. and a quantity discount may occur in terms of the number of unit loads due to the 
economy of scale. The classical quantity discount EO Q  model has been extensively studied in the 
literature (Das [3], Tersine et al. [11], Hadley and Whitin [5], and Johnson and Montgomery [7]). Noting 
that all these quantity discount models analyze solely the unit purchase price discount, Lee [9] studied 
the EOQ model with set-up cost including a fixed cost and freight cost where the freight cost has a 
quantity discount. 

In the next section, we formulate two kinds of mathematical models: 1) optimal lot sizing policy model 
with price predetermined and 2) optimal pricing and lot sizing policy model. For each model, the 
properties of an optimal solution are discussed and solution algorithm is given in Section 3. Numerical 
examples are provided in Section 4, which is followed by concluding remarks. 

2. Development of the model 

The assumptions of this study are essentially the same as the EOQ model except for the conditions of 
permissible delay and the constitution of ordering cost. 

The following assumptions and notations are used: 
1) The demand rate is represented by a constant price elasticity function of retail price. 
2) No shortages are allowed. 
3) The supplier proposes a certain credit period and sales revenue generated during the credit period is 

deposited in an interest bearing account with rate I. At the end of the period, the credit is settled and 
the retailer starts paying the capital opportunity cost for the items in stock with rate R (R >/I). 

4) The retailer pays thd freight cost for the transportation of the quantity purchased where the freight 
cost has a quantity discount. 

D: Annual demand rate, as a function of retail price (P);  D = KP -e. 
K: Scaling factor ( >  0). 
e: Index of price elasticity (>  0). 
P: Unit retail price. 
C: Unit purchase cost. 
Q: Order  size. 
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NFj- th  freight cost break quantity, j = 1, 2 . . . .  ,n ,  where N O < N ,  < --- < N  n <Nn+ 1, with N O = 0 and 
Nn + l = oo. 

S: Fixed ordering cost. 
Fj: Freight cost for Q, N i_l  < Q ~< N~, where Fj_ 1 < Fj and Fj_ 1//Nj_I > Fj//Nj, f = 1, 2 . . . . .  n .  

t: Credit period set by the supplier. 
H:  Inventory carrying cost, excluding the capital opportunity cost. 
R: Capital opportunity cost (as a percentage). 
1: Earned interest rate (as a percentage). 

Note that the inequalities Fj_ 1 <Fj  and Fj_1/Nj_ , > F J N j  are necessary to have some quantity 
discount in the freight cost for changing the order  size from Nj_ 1 to Nj. Thus the cost for setting an 
order  becomes S + Fj for Nj_ 1 < Q ~< Nj. 

The retailer's objective is to maximize the annual net profit H(P, Q) from the sales of the products. 
The annual net profit consists of the following five elements: 

1) annual sales revenue = DP; 
2) annual purchasing cost = DC; 

1 3) annual inventory carrying cost = ~QH; 
4) annual ordering cost = D(S + Ffl/Q, for Nj_ 1 < Q ~< Nj; 
5) annual capital opportunity cost (refer to Goyal [4]): (i) Case 1: Dt <~ Q (see Fig. la). As products are 

sold, the sales revenue is used to earn interest with annual rate I during the credit period t. And 
the average number of products in stock earning interest during time (0, t) is ½Dt and the interest 
earned per order  becomes ½Dt. tCI. When the credit is settled, the products still in stock have to 
be financed with annual rate R. Since the average number of products during time (t, Q /D)  
becomes ½ D ( Q / D -  t), the interest payable per order can be expressed as ½ D ( Q / D -  t ) ( Q / D -  

t)CR. 
Therefore,  

annual capital opportunity cost 

½D(Q/D - t ) ( Q / D  - t )CR - (½Dt)" tCI D2C(R - l ) t  2 QRC 
= = + - -  - DCRt. 

Q / D  2Q 2 

(ii) Case 2: Dt > Q (see Fig. lb). For the case of Dt > Q, all the sales revenue is used to earn interest 
with annual rate I during the credit period t. The  average number of products in stock earning interest 

~Q and Q, respectively. during time (0, Q / D )  and (Q/D,  t) become 1 

Inventory 
icvel l level 

t OlD time 

(a) Dt ~ Q 

Invcntory 

T 

01l) t t ime 

CO) Ot > Q 

Fig. 1. Credit period vs. Q / D .  



S.W. Shinn et al. / European Journal of Operational Research 91 (1996) 528-542 531 

Therefore,  

½Q(Q/D)CI + Q(t  - Q/D)C1 QIC 
annual capital opportunity cost = - DCIt. 

a / o  2 

The annual net profit II(P, Q) can be expressed as 

/ / (  P,  Q) = Sales revenue - Purchasing cost - Inventory carrying cost - Ordering cost 

- Capital opportunity cost. 

Depending on the relative size of Dt to Q, II(P, Q) has two different expressions, as follows: 
Case 1: Dt < Q. 

/'/1,j( P,  Q) = DP - DC 
QH D(S+Fi )  ( D 2 C ( R - I ) t 2  QRC ) 

2 Q -2-Q + T - DCRt , 

Q ~ (Nj_, ,Ny],  j = l , 2  . . . . .  n 

Case 2: Dt > Q. 

H2d(P ,  Q) = DP - DC 

(1) 

QH D(S + Fj) ( Q_~I2C ) 
2 Q D C I t ,  Q E ( N j _ I , N y ] ,  j = l , 2  . . . . .  n. 

(2) 

The D 2 term in the above equations appears to be the complicating term which makes it very difficult to 
find an optimal solution. For the analysis, we deal with the following two models. The solution of Model 
1 is to be utilized in deriving an algorithm for Model 2. 

Model 1: optimal lot sizing policy model with price predetermined. Retail price is assumed to be already 
set by the retailer and represented by p0. Under  this model, the demand becomes constant and so the 
annual net profit function becomes a single variable problem of maximizing H(P °, Q). 

Model 2: optimal pricing and lot sizing policy model. Some retailers make pricing decision on the basis 
of the projected demand for their product. In this sense, the decisions with respect to price and order 
size represent plans rather than irrevocable commitments. Also, the availability of the credit period from 
the supplier tends to widen the feasible price range from which the retailer can choose an optimum retail 
price. Hence, in this model the pricing and lot sizing problems are considered simultaneously. 

3. Determinat ion  of  opt imal  policy 

3.1. Model 1 

The problem is to find an optimal lot size Q * which maximizes H ( P  °, Q). For the normal condition 
(R >/I)  as stated by Goyal [4], Hid(P° , Q) is a concave function for every i and j. And so, there exists a 
unique value Qid which maximizes Hid(P° , Q) which is given by 

Q,d = ¢2D(S, + F j ) / / n l  , (3) 

where S 1 = S + ½DC(R - I)t 2 and H 1 = H + CR, and 

Q2d = ¢2D(S + Fj)/H2, (4) 
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where H 2 = H + CI. 
Qi,j and H~,j(P °, Q) can be shown to have the following properties. 

Property 1. Forigiven,  Qi , /<Qij+l ,  j =  1, 2 , . . . , n  - 1. 

Property 2. For any Q, Hi j (P  °, Q) > Hi,j+I(P °, Q), i = 1, 2; j =  1, 2 . . . . .  n - 1. 

Property 1 indicates that the value of both Qa,j and Q2,j is strictly increasing as j increases. Property 2 
implies that both H1,j(P °, Q) and H2,j(P °, Q) are strictly decreasing for any fixed value of Q as j 
increases. Since our problem structure satisfies these two properties, we are able to adopt the results of 
Lee [9] in developing the solution algorithm of Model 1. Now, we present two theorems, one for Case 1 
and the other for Case 2. Based on these theorems, we only need to consider a finite number of 
candidate values of Q in finding an optimal value Q * 

Theorem 1 (for Case 1). Suppose Dt belongs to (N~_ 1, N~] for some a. Let b be the largest index such that 
Ql,0 > Nb, where Ql,0 = (2DS1/H1.  Also, let c be the larger value of a and b, and k (k >i c) be the first 
index such that Ql,k <~ Nk, respectively. 

(i) I f  the index k (<~ n) exists and Ql,k < Dt, then Q * must be less than Dt. 
(ii) I f  the index k ( <~ n) exists and QLk >1 Dt, then we have to consider Q = No, Nc + i . . . . .  Nk-  1, Ql,k only 

as candidates for Q*. 
(iii) I f  QI,/ > Ny for all c <~j <~ n, then we have to consider Q = N~, No+ 1 . . . . .  N n as candidates for Q *. 

Theorem 2 (for Case 2). Suppose Dt belongs to (Na_ l, Na] for some a. Let b be the largest index such that 
Q2,0 > Nb, where Q2,0 = ~ 2 D ~ z ,  and k (k > b) be the first index such that Q2,k <~ Nk, respectively. 

(i) I f  N b >1 Dt;-N~_ 1 becomes the only candidate for Q* 
(ii) I f  the index k ( <~ a) "exists and Q2,k < Dt, then we have to consider Q = N b, N b + 1 . . . .  , Nk-  1, Q2,k as 

candidates for Q *. 
(iii) I f  Q2,j>Nj for all b<~j <a and Q2,a>~Dt, then we have to consider Q = N b ,  Nb+ 1 . . . . .  Na_ 1 as 

candidates for Q *. 

To facilitate the explanation of Theorems 1 and 2, we present Fig. 2, which shows the shape of 
Hi,j(P °, Q) of the example problem introduced in Section 4.1. Note that IIi,j(P °, Q) in solid lines 
satisfies both Properties 1 and 2. Applying Theorems 1 and 2 to the problem, it is found that 
a = 2 ,  b = l , c = 2 ,  k = 3  for Case 1 (Q>~Dt) and a = 2 ,  b = l  for Case 2 ( Q < D t ) .  Hence, the 
candidates for an optimal Q are N 2 and Q1.3 for Case 1 and N 1 for Case 2, and the optimal lot size 
becomes N 2 with its maximum annual net profit of $8568. The contents of (ii) and (iii) in each theorem 
are essentially repetitions of Lee's finding [9] and so we omit the proofs. The proofs for (i) are given in 
the Appendix. 

Based on the above theorems, we develop the following solution procedure for determining an 
optimal lot size Q *. 

Solution algorithm for Model 1 
Step 1. This step identifies all the candidate values Q0 of Q satisfying Qo >I Dt (for Case 1) and the 

corresponding annual net profit H(P  °, Q0). 
Step 1.1. Compute Q1,0 = ~/2DS1/Hl and find index b such that Ql,o ~ (Nb, Nb+l]- 
Step 1.Z Find index a such that Dt E(Na_ l, N a] and let c = max[a, b]. 
Step 1.3. Compute QI,j by Eq. (3) and find the first indcx k (k >~ c)} such that Ql,k <~ Nk. 
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~i:: i ' : 

Fig. 2. Ilid(P°, Q) of an example problem in Section 4.1. 

Step 1.4. 

Step 1.5. 

Step 2. 

Step 2.1. 
Step 2.2. 

Step 2.3. 

Step 3. 

If the index k ( <  n) exists, then go to Step 1.5. 
Otherwise, compute the annum net profit with Eq. (1) for Qo = No, Nc+l . . . . .  N n and go to Step 
2. 
If Ql,g < Dt, then go to Step 2. 
Otherwise, compute the annual net profit with Eq. (1) for Q0 = Arc, Nc+l . . . . .  Nk-1, Ql,k and go 
to Step 2. 
This step identifies all the candidate values Q0 of Q satisfying Q0 < Dt (for Case 2) and the 
corresponding annual net profit H ( P  °, Q0). 
Compute Q2,0 = ~/2DS/H2 and find index b such that Q2,0 • (Nb, Nb+l]- 
If N b >1 Dr, then compute the annum net profit with Eq. (2) for Q0 = Na-  1 and go to Step 3. 
Otherwise, compute Q2j by Eq. (4) and find the first index k (k > b) such that Q2,k <~ Nk and 
go to Step 2.3. 
If the index k ( <  a) exists and Q2,k < Dt, then compute the annum net profit with Eq. (2) for 
Q0 = N b ,  Nb+l . . . .  ,Nk-l ,  QE, k and go to Step 3. 
Otherwise, compute the annual net profit for Q0 = Nb, Nb + l . . . .  , Na_ 1 and go to Step 3. 
Select the optimal lot size (Q*)  among Q0 found in Steps 1 and 2 which gives the maximum 
annum net profit. 

3.2. Model 2 

In this model, we want to find (P  *, Q * ) which maximizes H(P, Q). Theorems 1 and 2 state that for 
p = p0 fixed, only the e lements  in set B = {N/, Qi j(pO) for i = 1, 2 and j = 1, 2 . . . .  , n} become candi- 
dates for an optimal lot size Q (p0)  where Qi,/(/3'°) is obtained by substituting P with p0 in Eqs. (3) 
and (4). Noting that some elements of B can be dropped from consideration in search of Q*(P), we 
formulate the following conditions ai.j(P) and N /m u s t  satisfy to become a candidate of Q * (P).  
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(C-l). The conditions for Qi.y(P) to be a candidate of Q * (P) are: 

a,,j(e) >~Dt and N/_ 1 <Q,,/(P) <N, for Case 1, (5) 

a2a(e) <Ot and Nj_ 1 < a2a.(P) ~<Nj for Case 2. (6) 

(C-2). The conditions for Nj to be a candidate of Q*(P) are: 

Nj>~Dt and N~<a,a(e ) forCasel, (7) 

Nj<Dt and Nj<Qza.(P)  for Case 2. (8) 

For ai,j(P) to be a candidate of Q*(P) in Case 1, QI,j(P) must lie on (Nj_ 1, Nj] and also 
QI,y(P) >i Dt must hold. For Nj to be a candidate of Q *(P) in Case 1, HI,j(P, Q) must be increasing at 
N~. In other words, the conditions N/< QI,j(P) and N~ >1 Dt must be satisfied. The conditions for Case 2, 
Eqs. (6) and (8), are justified in a similar way. 

Now, let us consider Qt,/(P)>/Dt in Eq. (5). Since the demand rate D is also a function of P, the 
inequality can be written as 

v / 2 D ( S  + Fj) + D Z C ( R - l ) t  2 
QI,/( P ) = H + CR >1 Dt = gp-et.  (9) 

Rearranging Eq. (9), 

P >1 (½Kt2(H + CI ) / (S  + Fj)) a/e. (10) 

Let 

P l j =  (½KH2t2/(S + Fj)) 1/e. (11) 

It is self-evident that for any P >/PI/, the inequality QL/(P) >_- Dt holds. Similarly, Nj_ 1 < Qx,y(P) in Eq. 
(5) can be rewritten as 

where 

P < e2j ,  (12) 

[ ( KC(R - l ) t  2 ) 

[ (2K(s + F,)/(H, 
Also, from Qla.(P)~<N/in Eq. (5), we have 

P >1 P3/, 

where 

, 3 ; : / t  ¢(s + + 

l /e 

if R>I, 

if R=I .  

(13) 

if R > I ,  

if R=I .  
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With a similar procedure, other price ranges are obtained from inequalities in Eqs. (6), (7) and (8). 
They are: 

P <Plj ,  where P l y =  (1KI-t2t2//(S + Fj)) 1/e from a2,y(e) <Dt, (14) 

P>~P4j, where P4j=(2K(S+Fj)/(HzN/Z)) '/e from Q2,y(P)~<N~, (15) 

2 1/e 
e<e5y ,  where P 5 j=(2 K (S +F j ) / (HzN y _ , ) )  from Q2,j(P)>Ny_1, (16) 

e>_.e6y, where P6j=(Kt /Ny)  '/~ from Nj~>D/. (17) 

We conclude that Q~,j(P) determined with P value which satisfies all the three inequalities (10), (12) 
and (13) can be a candidate of Q *(P). In other words, Q1j(P) can be a candidate of Q * ( P )  only if P is 
an element of price interval PIQj = {P [ P3j <~ P < P2j and P >I Ply}. Utilizing the price ranges in Eqs. 
(10)-(17), we find the following price intervals which correspond to conditions (C-l) and (C-2). 

(PI-I). Price interval on which Qi,/(P) becomes a candidate for Q*(P) :  

PIQj = {P I P3j <~ P < P2y and P >1 Ply} for Case 1, (18) 

PI%= {Pleay<P <e5y and e <ely} forCase2 .  (19) 

(PI-2). Price interval on which Nj becomes a candidate for Q *(P): 

PINy = {PIP < P3s and e >1 P6y} for Case 1, (20) 

PINt = {PI P < P4j and P < P6y} for Case 2. (21) 

The price intervals we present have a significant role in solving Model 2. We consider (PI-1) for 
example. If P ~ PIQ i, Qi,j(P) satisfies condition (C-l) and becomes a candidate for Q * (P).  Substituting 
Q with Qij(P) in Hij(P, Q), we have a problem of maximizing Hi,j(P , Qi,j(P)), which is a single 
variable function. Let IIi°j(P) = Hi,y(P , Qi,y(P)), i = 1, 2; j = 1, 2 . . . . .  n. Note that Hi°j(P) is valid only 
on the interval P ~ PIQ/. Similarly, if P ~ PINy, then Ny satisfies condition (C-2). Substituting Q with Ny 
in llia(P, Q), we have Hi,s(P, Ny), i = 1, 2; j = 1, 2 . . . . .  n, which is also a single variable function since 
Ny is a constant. Altogether we have at most 4n single variable functions in the form of IIi°,y(P) and 
Hi,j(P, Nj). An optimal solution ( P  *, Q * ) which maximizes II(P, Q) is found by searching over Hi°,y(P) 
and lli,j(P,Ny), and 

max[ max H°.(P), maxII(P,Q)=e,Q [eeP ,% " max H,,j(P, Nj), max H° , j (P ) ,  max Hz,j(P, Ny)]. 
P~ PINy P~ PIQ i P~ PINy 

J J J 
(22) 

Now, we are going to investigate the characteristics of Hi°j(P) and Hi,j(P, N/). With Q = Qi,j(P) as a 
function of P, the following single variable functions are obtained: 

II°,y( P) = D{ P - C( 1 - Rt)} - I/2H1D( S1 + Fy) , (23) 

lI~j( P) = D{ P - C(1 - It)} - 1/2H2D( S + Fy) , (24) 
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where j = 1, 2 , . . . ,  n and D = g e  -e. Utilizing Mathematica by Wolfram [12] to obtain derivatives of 
II°i(P), we have 

Hod( P ) ' =  D + D'{ P - C( 1 - Rt )} - D' (2S, - S + Fj) ~/½H1/( D(S ,  + F~)),  (25) 

H~i ( P) '  = O + D'{ P - C(1 - It)} - D'¢kH2(S + Fi)/O. (26) 

Also, the second order condition for concavity is 

HOd( P)" = eDe-2{( e - 1) P - (e  + 1)C( 1 - Rt) - fl( P)} < 0, (27) 

n ° ; ( P y  = eDP-2{(e- 1 ) P -  (e + 1)C(1 - l t )  - f z (P)}  < 0, (28) 

where 

f , (P) = 
I/H-l-1 [(e + 2) (S  + F j )2+ (e  + 1)DCtZ(R-I){3(S + F~)+ Dc t z (R- I ) } ]  

CO{2(S1 + Fj.)} 3 

1/ H2( e + 2)1(S + F j )  
f2(e) V 8D 

For e < 1, Hi°i(PY > 0 and FIi°/(P) is an increasing function of P. Thus an optimal value Pij of 
l-I°~(P) occurs at the maximum point of the price interval (PIQj.) corresponding to Qid(P). For e > 1, it 
can be shown that both fl(P) and f2 (P)  become positive and the second order condition is satisfied if 
P < C(1 - Rt)(e + 1) / (e  - 1). Note that, given the second order assumption, P,.j is the one which has the 
minimum absolute value of Hi°j(P) ' on the price interval (PIQj). 

Now, with Q = N~, the following results are obtained for Hid(P, Q): 

D{ e(2S, - S + Fj) } 
II1j(P, Nj) '=  ~ (1 - e )P+eC(1  - R t )  + -Ni- , (29) 

, , e O [ (  S + F i l _ f 3 ( p ) ] ,  (30) rll,j(e, Ni) =-~  ( e - 1 ) P - ( e +  l) C ( 1 - R t ) +  Nj 

where f 3 ( P )  = (2e + 1)Ct2( R - I) D/N i > O, 

D {  e(S + F j )  } (31) 1-12,j(P, Nj.)' = ~ (1 - e )P+eC(1  - I t )  + Nj ' 

n2,j(e,N) ( e - 1 ) e - ( e + l )  C(l-It)+ 1]" 

For e ~< 1, Ilia(P, Nj) is increasing in P and for e > 1, f3 (P)  > 0. It can be shown that if P < C(1 - 
RtXe + 1) / (e  - 1) holds, IIid(P , N~) is concave. Based on these characteristics of IIid(P, N~), an optimal 
value Pi,j of II~,~(P, N~) can be easily determined on the corresponding price interval PINj, j = 1 2 , . . . ,  n. 

Note that for problem with e > 1, the algorithm is valid only when P < C(1 - RtXe + 1) / (e  - 1). 
Now, we present the solution procedure for Model 2. 
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Solution 
Step 1. 

Step 1.1. 

Step 1.2. 

Step 2. 

Step 2.1. 

Step 2.2. 

Step 3. 

algorithm for Model 2 
This step identifies all the candidate values Q0 of Q satisfying Q0 >/Dt (for Case 1). For each 
Q0, its optimal value PI,~ is determined from the corresponding price interval. 
Determine P~,~. which maximizes H°Ij(P) among the following price intervals: P ~ PIQ i and 
P ~< P,  withQ0 = QI,i(P), j = 1, 2 , . . . ,  n, where Pu is a given upper limit of retail price. 
Determine Pl,j which maximizes III,j(P, Nj) among the following price intervals: P ~ PINj and 
P<~Pu with Qo =Nj ,  j =  1, 2 . . . .  ,n.  
This step identifies all the candidate values Q0 of Q satisfying Q0 < Dt (for Case 2). For each 
Q0, its optimal value P2a is determined from the corresponding price interval. 
Determine Pz,j which maximizes II~J,j(P) among the following price intervals: P ~ PIQi and 
P ~< Pu with Q0 = Q2j(P),  J = 1, 2 . . . . .  n. 
Determine P2j which maximizes II2j(P,  Nj) among the following price intervals: P ~ PIN i and 
P ~ P u  with Q0 =Nj,  j =  1, 2 . . . . .  n. 
Select the optimal retail price ( P  *) and lot size (Q *) which gives the maximum annual net 
profit among those obtained in the previous steps. 

Note that in this algorithm the number of calculations needed to find an optimal solution is 4n, i.e., 
(2n) × number of calculations each for Step 1 and Step 2. 

4. Numerical example and sensitivity analysis 

To illustrate the solution algorithms, the following problem is considered. 
S = $ 5 0 ,  K = 2 . 5 , 1 0 5 ,  C = $ 3 ,  H = $ 0 . 1 ,  R = 0 . 1 5  ( = 1 5 % ) ,  I---0.1 (=1 0 %) ,  t = 0 . 3 ,  N j = j . 5 0 0 ,  j =  
1, 2 . . . . .  10, and F~. = 10 * j * (1 - 0.02 * ( j  - 1)), j = 1, 2 . . . .  ,10. 

4.1. Solution with Model 1 

The optimal 
Step 1. 
Step 1.1. Since 
Step 1.2. Since 
Step 1.3. Since 
Step 1.4. Since 
Step 1.5. Since 
Step 2. 
Step 2.1. Since 
Step 2.2. Since 
Step 2.3. Since 
Step 3. 

solution with e = 2.5 and p0 = 5.7 can be obtained through the following steps: 

Ql,o = 917 ~ (N1, N2] , b = 1. 
Dt = 967 ~ (N~, N2], a = 2 and let c = max[2, 1] --- 2. 
Ql,z = 1035 > N2( = 1000) and Q1,3 = 1086 ~ N3(= 1500), k = 3. 
k ( =  3) < n ( =  10), go to Step 1.5. 
Ql,k >1 Dt, compute the annual net profit with Eq. (1) for Q0 = N2, Q1,3. 

Qz,o = 898 ~ (Nt, N2], b = 1. 
N 1 = 500 < Dt(= 967), Q2,2 = 1059 > N2(= 1000) and Q2.3 = 1127 ~< N3(= 1500), k = 3. 
02,3 > Dt, Qo = N1 and go to Step 3. 

Since I I m ( P  °, 1000) = 8568 = max[Hl,z(P °, 1000),HI,a(P °, 1085),H2,1(P °, 500)], an optimal lot 
size becomes 1000 with its maximum annual net profit $8568. 

4.2. Solution with Model 2 (e > 1) 

The solution procedure with e = 2.5 and Pu --- C(1 - Rt)(e + 1) / (e  - 1) = 6.68 generates an optimal 
solution ( P  *, Q *) through the following steps: 
Step 1. 
Step. 1.1. Solving Eq. (25) numerically in the price interval corresponding to Qo = QI j (P ) ,  J = 1, 2 . . . .  ,10, 

we obtain P~,j and these results are presented in Table 1. 
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Table 1 
Results of Step 1 
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J Q = QIj (P)  

P ~ PIQj and P < Pu 

a = ~  

PI,j Qt,j(Pt,j ) P ~ PINj and P < P~ Pi j  Nj 
1 O 
2 [5.83, 6.68] 
3 [5.05, 6.01] 
4 ¢ 
5 
6 O 
7 ~J 
8 ¢ 
9 ¢ 

10 ¢ 

5.83 999 [5.63, 5.82] 5.63 
5.05 a 1313 a ~ 
_ - -  { J  - 

_ _ [ ~  - 

_ _ { ~  - 

1000 

a Optimal solution for Case 1 (Annual net profit = $8811). 

Step 1.2 

Step 2. 
Step 2.1. 

Step 2.2. 

Solving Eq. (29) numerically in the price interval corresponding to Q0 = Nj, j = 1, 2 , . . . ,  10, we 
obtain PI,j and these results are presented in Table 1. 

Solving Eq. (26) numerically in the price interval corresponding to Q0 = Q2,j(P), J = 1, 2 . . . . .  10, 
we obtain P2,j and these results are presented in Table 2. 
Solving Eq. (31) numerically in the price interval corresponding to Q0 = Nj, j = 1, 2 . . . . .  10, we 
obtain P2,j and these results are presented in Table 2. 

Step 3. From the results in Steps 1 and 2, an optimal solution (P*,  Q*) becomes (4.97, 1000) with its 
maximum annual net profit $8836. 

4.3. Solution with Model 2 (e <~ 1) 

We solve the problem with Pu = 300 and e = 0.5. Table 3 shows the results obtained at the end of Step 
2. Note that  at the end of Step 1, we have { P I P ~ P I Q  i and P < P , } = O  and { P I P ~ P I N j  and 

Table 2 
Results of Step 2 

j Q = Q2,j(P) Q = Nj 

P ~ PIQj and P <~ Pu Pz,j Q2,j(Pz,j) P ~ PINj and P <~ Pu Pz,j Nj 

1 ¢ - - [0.0, 6.68] 5.23 
2 ¢ - - [0.0, 5.62] 4.97 
3 [4.54, 5.04l 4.96 1342 [0.0, 4.53] 4.53 
4 [3.76, 4.73] 4.53 1582 [0.0, 3.75] 3.75 
5 [3.27, 3.89] 3.76 2094 [0.0, 3.26] 3.26 
6 [2.91, 3.36] 3.26 2602 [0.0, 2.90] 2.90 
7 [2.65, 2.99] 2.91 3108 [0.0, 2.64] 2.64 
8 [2.44, 2.71] 2.65 3611 [0.0, 2.43] 2.43 
9 12.27, 2.49] 2.44 4113 [0.0, 2.26] 2.26 

10 [2.13, 2.31] 2.27 4613 [0.0, 2.12] 2.12 

5 ~  
1000 a 
1 5 ~  
2 0 ~  

3000 
3500 
4000 
4 5 ~  
5 0 ~  

a Optimal solution for Case 2. This solution is also the global optimum with H2.2(P2. 2, N 2) = $8836. 
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Table 3 
Results  of  the case p rob lem with Pu = 300 and e = 0.5 

J Q = Q2,j(P) Q=N, 
P ~  PIQj  and P<~Pu P2, i  Qz,j(P2.j) ll°,j(P2.j) P ~  PIN. /and P<~Pu P2,i Nj llz.j(P2j, Nj-) 

1 ¢ - - - [0.0, 300.0] 300.0 500 4 286 293 
2 ¢ - - - [0.0, 300.0] 300.0 1000 4 286 920 
3 ¢ - - - [0.0, 300.0] 300.0 1500 4 287 066 
4 ¢ - - - [0.0, 300.0] 300.0 a 2000 a 4287092 
5 ¢ - - - [0.0, 300.0] 300.0 2500 4 287 070 
6 [208.6, 300.0] 300.0 2740 4 287 029 [0.0, 208.6] 208.6 3000 4 287 024 
7 [129.6, 240.2] 240.2 3001 3826456 [0.0, 129.6] 129.6 3500 4286964 
8 [ 86.1, 146.9] 146.9 3501 2968635 [0.0, 86.1] 86.1 4000 4286896 
9 [60 .1 ,  96.2] 96.2 4001 2376267 [0.0, 60.1] 60.1 4500 4286821 

10 [43 .5 ,  66.3] 66.3 4501 1944474 I0.0, 43.5] 43.5 5000 4286737 

a Opt imal  solution for Case 2 which also becomes the global opt imum.  

P < Pu} = O, j = 1, 2 . . . .  , n, for Case 1. An optimal solution ( P * ,  Q*)  becomes (300, 2000) with its 
maximum annual net profit $4 287092. 

4.4. Sensitivity analysis 

An interesting question is how much effect the length of credit period has on the retail price, the lot 
size and the retailer 's profit. Since the problem structure of Eqs. (1) and (2) does not permit sensitivity 
analysis, the same example problem is solved to answer the above question. Six levels of t are adopted, 
t = 0, 0.05, 0.1, 0.15, 0.2, and 0.3. For each level of  t, six levels of e, ranging from 0.5 to 3.0 with an 
increment of 0.5, are tested. For the problem with e ~< 1, Pu = 15, 30, 300 are examined. The results are 
shown in Table 4 and the following observations can be made which are consistent with our expectations: 

(i) With e > 1, as either t or e increases, P*  decreases. 
(ii) With e > 1, as t increases, P*  decreases while II(P*, Q*) increases. 

(iii) With e ~< 1, P* is identical with Pu- 
(iv) With e fixed, as t increases, Q* is nondecreasing. 

5. Conclusion 

We have analyzed the joint pricing and lot sizing policy of a retailer in an environment in which the 
retail demand of the product is a constant price elasticity function of the retail price, the freight cost has 
a quantity discount and the supplier provides a certain fixed credit period for settling the amount  the 
retailer owes to him. 

For a retailer who benefits from the supplier 's offer of permissible delay in payments, it is not 
uncommon that he lowers the retail price to a certain degree expecting that he can make more profit by 
stimulating the customer demand. The ordering cost sometimes depends upon the ordering quantity, 
owing to discounts allowed by a shipping company for large order. In this regard, we think that the model 
presented in this paper  may be more realistic for some real world problems. Sensitivity analysis with an 
example problem generated results which are consistent with our expectations. 
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Table 4 
Sensitivity analysis with various values of t and e 

e Pu t 

0 0.05 0.1 0.15 0.2 0.3 

0.5 15 Q • 4000 4000 4500 4500 4500 4500 
P • 15.0 15.0 15.0 15.0 15.0 15.0 
H ( P  ", Q" ) 771580 772 837 773 832 774 800 775 768 777 705 

30 Q" 3000 3500 3500 3500 3500 3500 
P • 30.0 30.0 30.0 30.0 30.0 30.0 
H(P ", Q"  ) 1229969 1230873 1231590 1 232275 1232959 1234328 

300 Q • 1500 1500 2000 2000 2000 2000 
P* 300.0 300.0 300.0 300.0 300.0 300.0 
I I (P  ° , Q ' )  4285655 4285953 4286215 4286443 4286659 4287092 

1.0 15 Q * 2000 2000 2000 2000 2000 2000 
P ° 15.0 15.0 15.0 15.0 15.0 15.0 
I - I (P ' ,  Q*)  198720 199069 199366 199620 199870 200370 

30 Q" 1500 1500 1500 1500 1500 1500 
P • 30.0 30.0 30.0 30.0 30.0 30.0 
H ( P ° ,  Q ° ) 224150 224 329 224 490 224 634 224 762 225 012 

300 Q ° 426 427 429 431 435 446 
P * 300.0 300.0 300.0 300.0 300.0 300.0 
H ( P  ", Q ~ ) 247 266 247 284 247 302 247 319 247 336 247 367 

1.5 Q ° 1500 1500 1500 1500 1500 1500 
P * 9.16 9.10 9.05 9.02 8.99 8.88 
I I (P  ", Q ° ) 54 663 54 857 55 031 55185 55 325 55 606 

2.0 Q • 1000 1000 1000 1500 1500 1500 
P ' 6.14 6.10 6.06 6.00 5.97 5.92 
H ( P  *, Q" ) 20086 20228 20354 20471 20585 20797 

2.5 Q * 1000 1000 1000 1000 1000 1000 
P"  5.11 5.08 5.05 5.02 5.00 4.97 
I I (P  °, Q ° ) 8367 8459 8546 8627 8701 8836 

3.0 Q" 500 808 825 851 877 950 
P • 4.68 4.60 4.57 4.53 4.51 4.47 
H ( P  °, Q • ) 3667 3722 3776 3828 3878 3971 

Appendix 

Proof of (i) in Theorem 1. Since Ql,k < Dt and Ql,0 > Nb, the index k equals a. And Ql,a is a maximum 
point of H1,a(P °, Q), which is a concave function. Thus, HI,a(P °, Q) is decreasing in Q for Q >1 Dt and 
by Property 2, we have 

HI,~(P °, Dt) >~Hl,a(P °, Q) for Q>~Dt (A.I)  

> IIl,~(P °, Q) for all v > a. (A.2) 

It can be concluded that Dt gives a maximum annual net profit for Q >1 Dt. 
Also, from Eq. (3), 

Ql,~ = ~/2D( S + Fa) + D2C( R -  I ) tZ/ [  H +  CR] < Dt. (A.3) 

Squaring both sides of Eq. (A.3) and rearranging, 

~/2D(S + F~) / (H + CI) < Dt. (A.4) 
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Eq. (A.4) implies that Q2,a = ¢2D(S + F a ) / ( H +  CI) <Dt and so H2,~(P °, Q) is decreasing in Q for 
Q2,a < Q < Dt. Also, since the annual net profit function is continuous at Q = Dr, we have 

H1,~( P °, Dt) = ll2,a( P °, Dt) <112,~(e°,a) for some a <Dt. (A.5)  

Therefore,  if Ql,a < Dt, then Q* must be less than Dt. [] 

Proof of (i) in Theorem 2. Since Q2,0 < Q2,j for j = 1, 2 . . . . .  n, we have 

Q2,v > N, for any v < b. (A.6)  

Note that Q2,~ is a maximum point of Hz,v(P °, Q), which is a concave function. Thus, 

n2,~(P °, N~) >~n2.~(P °, Q) for Q ~ (N~_, ,  N~). (A.7) 

Also, from Eq. (2), 

n2.~_,(P °, N~_,) =D( P -  C) 

N~H DS 
< D ( P - C )  2 N~ 

(because Nv <~ N b < Ql,o) 

N~H DS 
< D ( P - C )  2 N~ 

N~_xH DS ( N~_,IC ) DF~_ 1 
2 N~_ 1 2 DCIt N~_ l 

( N i l e  ) DF~_ t 
2 DCIt N~_ 1 

( N~ IC ) DF~ 
DCIt _ Ii2,~( pO, N~) 

2 N. 
(because F~_ 1/Nv_ 1 > fv//Nv). 

From (A.8), (A.9) and (A.10), 

//2,v_l(e °, °, for any v~<b. 

Also, since the annual net profit function is continuous at Q = Dt, we have 

rll,°( e°,Dt ) =1-12,a( e°,Dt ) > / / 2 , a ( e ° , Q )  for ?Ca_ ~ < a < Dt. 

Therefore,  if N b >~Dt and Q* < D r ,  then Q* = N  a_l. [] 

(A.8)  

(A.9) 

(A.10) 

(A.11) 

(A.12) 
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