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We formulate the edge coloring problem on a simple graph as the integer program of covering edges by matchings. For the NP-hard 
case of 3-regular graphs we show that it is sufficient to solve the linear programming relaxation with the additional constraints that 
each odd circuit be covered by at least three matchings. We give an efficient separation algorithm for recognizing violated odd circuit 
constraints and a linear programming based constrained weighted matching algorithm for pricing. Computational experiments with 
the overall linear programming system are presented. 

edge coloring, integer programming 

1. Introduction 

An edge coloring of a graph G = (V, E)  is a 
coloring of the edges of G so that any pair of 
edges that are incident to a common node have 
different colors. The chromatic index of G, de- 
noted by x(G), is the minimum number of colors 
in an edge coloring of G. The edge coloring prob- 
lem is to find a coloring of G with x(G) colors. 

Let A(G) be the maximum degree over the 
nodes of G. Clearly, x (G)> A(G). The edge col- 
oring problem for simple graphs, i.e. those without 
loops or parallel edges, appears to be greatly sim- 
plified by the following theorem of Vizing [15]. 

Theorem 1. If  G is a simple graph, then x(G) -= 
A(G) or A(G) + 1. 

In fact there is a proof of Vizing's theorem, see 
Faber, Ehrenfeucht and Kierstead [3] and Lovasz 
and Plummer [9] that gives a polynomial-time 
algorithm for coloring any simple graph with 
A (G) + 1 colors. So the unresolved decision prob- 
lem for a simple graph is to determine whether it 
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can be colored with A(G) colors. As shown by 
Holyer [8], this problem is NP-complete, even for 
3-regular graphs. Note that by Vizing's theorem, 
the decision problem for 3-regular graphs is just to 
determine whether the chromatic index is 3 or 4. 

In this paper, we present a linear programming 
algorithm, involving both row and column genera- 
tion, for solving the edge coloring problem. In 
Section 2, we formulate the problem as an integer 
program with a huge number of variables and 
consider its linear programming relaxation. In 
Section 3, we improve the formulation by provid- 
ing additional linear inequalities that are satisfied 
by all integer solution but not all solutions to the 
original linear programming relaxation. In Section 
4, we show that it suffices to add a simple, but 
large, class of these valid inequalities to solve the 
edge coloring problem for 3-regular graphs. More- 
over we show that the separation problem for this 
class of inequalities is solvable in polynomial time 
for 3-regular graphs. Here the usual polynomial 
equivalence between separation and optimization 
does not hold because of the exponential number 
of variables. Section 5 presents a simplex al- 
gorithm that uses both row and column generation 
to solve a linear program with an exponential 
number of rows and columns. Computational re- 
sults for 3-regular graphs are given in Section 6. 
The algorithm is very efficient when X = 3 but is 
considerably slower when X = 4. 
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2. Fractional edge coloring 

A matching on G is a subset of the edges with 
the property that no pair of edges in the subset is 
incident to a common node. Hence in an edge 
coloring, a set of edges can have the same color if 
and only if the set is a matching. Therefore the 
edge coloring problem is to find a minimum cardi- 
nality covering of the edges by maximal match- 
ings, which can be formulated as the integer pro- 
gram 

(IP) x ( G )  = m i n  lx  

A x >  l, 
x > 0 and integer, 

where A is the edge-matching incidence matrix of 
G, i.e. aij -- 1 if edge i is in the j- th matching and 
aij = 0 otherwise. In any optimal solution to (IP) 
xj = 0 or 1, and the cover is defined to include the 
j- th matching if and only if xj = 1. 

As is the case with most combinatorial optimi- 
zation problems, the edge coloring problem has 
many different formulations. For example, a for- 
mulation with a polynomial number of variables is 
obtained by letting xjk = 1 if edge j receives color 
k and xjk = 0 otherwise. A well-known difficulty 
in solving formulations of this type is the symme- 
try with respect to the colors. 

We have two main reasons for studying the 
formulation (IP), although we do not know 
whether it is necessarily the best one for computa- 
tional purposes. The first is our interest in the 
possibility of solving IP's using column genera- 
tion. The second is because of the good approxi- 
mation to x(G)  obtained from the linear program- 
ming relaxation of IP. 

The fractional edge coloring problem, see 
Seymour [13] and Stahl [14], is obtained by drop- 
ping the integrality requirement in (IP), i.e. 

(LP) XLp(G) = rain lx  

A x > I ,  
x>~O. 

Proposition 1. X L p ( G )  >__ A(G). 

Proof. The result is a simple consequence of linear 
programming duality since the A(G) edges that 
are incident to some node of maximum degree 
yield a feasible solution to the dual. [] 

If X L p ( G ) > A ( G ) ,  or if we have found an 
optimal solution to (LP) that is integral, then we 
also have found x(G).  

Proposition 2. I f  XLp(G)>A(G),  then x ( G ) =  
A(G) + 1, and if XLp(G) = A(G) and there is an 
integral optimal solution to (LP), then x ( G ) =  
A(G). 

Proof. Both results follow immediately from 

XLp(G) > x ( G ) .  [] 

Although (LP) contains a number of columns 
that grows exponentially with the size of G, it can 
be solved efficiently. 

Theorem 2. Problem (LP) can be solved in poly- 
nomial time by an ellipsoid algorithm. 

Proof. The dual of (LP), denoted by (DLP), is to 
find nonnegative edge weights with the property 
that the sum of the edge weights over each match- 
ing is not more than one and the sum over all 
edges is maximum. The feasibility of a nonnega- 
tive edge weight vector w to (DLP) can be checked 
by finding a maximum weight matching in G: if 
the maximum weight is not more than 1, then w is 
dual feasible; otherwise, a matching M that yields 
the maximum weight defines a dual constraint 
that is not satisfied by w. 

Since maximum weight matching is solvable in 
polynomial time, see Edmonds [2], it follows by a 
theorem of GrStschel, Lovasz and Schrijver [6] 
relating the polynomial solvability of separation 
and linear programming that (DLP) and (LP) can 
be solved in polynomial time by an ellipsoid al- 
gorithm. [] 

Hence if the conditions of Proposition 2 hold, a 
minimum cardinality edge coloring can be found 
in polynomial time. The case that remains to he 
dealt with is when XLp(G)= A(G) but the only 
known optimal solutions to (LP) are fractional. 
Here our approach is to tighten (LP) by adding 
valid inequalities that are satisfied by all of the 
incidence vectors of edge colorings but not by the 
current fractional solution. 

It has been demonstrated for a number of 
combinatorial optimization problems, see, for ex- 
ample, Hoffman and Padberg [7] and Nernhauser 
and Wolsey [10], that this approach can be very 
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successful when the valid inequalities define facets, 
or at least high dimensional faces, of the convex 
hull of integral solutions. However, in all of the 
uses of constraint generation with which we are 
familiar, the number of columns is polynomially 
bounded. Thus what makes this formulation of the 
edge coloring problem interesting and novel from 
a mathematical programming perspective is the 
attempt to solve a linear program with an ex- 
ponential number of columns (incidence vectors 
of matchings) and rows (facet-defining inequalities 
of the convex hull of edge colorings). Moreover, 
this formulation is a good candidate with which to 
explore the possibility of solving a 'doubly ex- 
ponential' linear programming relaxation since it 
has a very small gap, i.e. x (G)  - XLp(G) < 1. 

3. Valid inequalities for the edge coloring poly- 
hedron 

We call the convex hull of the set of feasible 
solutions to (IP) the edge coloring polyhedron and 
denote it by P(G). Here we are interested in 
finding inequalities that are satisfied by all points 
in P(G) but not all feasible solutions to (LP). 

Let U_c V and E(U) be the subset of edges 
with both ends in U. A matching can cover not 
more than [½ I U l] edges from E(U). Hence, see 
Seymour [13] and Stahl [14], we get the family of 
valid inequalities for P(G) given by 

(1: MjC~E' 4=~} 

for all Uc_ V and all E'c_ E(U) (1) 

where xj is the variable corresponding to the 
maximal matching M/. 

We are particularly interested in the case where 
I U] is odd and the subgraph C = (U ,  E ' )  is a 
circuit. Then the right-hand side of (1) is [(2k + 
1) /k]  = 3 and we obtain the family of odd circuit 
constraints given by 

xj >_ 3 for all odd circuits C. (2) 
{y: MJ~C~} 

The odd circuit constraints are generally not im- 
plied by the edge constraints of (LP) unless I C ] 
= 3, but they can be generated from linear combi- 
nations of the edge constraints and rounding. For 

some graphs they give facets of P(G),  see Park 
[12]. 

4. A separation procedure for 3-regular graphs 

In this section we show that it is sufficient to 
add the odd circuit constraints to (LP) to solve the 
edge coloring problem for 3-regular graphs. This 
does no imply, however, that the odd circuit, edge 
and nonnegativity constraints define P(G) when 
P(G) is a 3-regular graph. However, when x (G )  
= 4, by adding odd circuit constraints we push the 
value of the optimal solution to (LP) above 3, 
which is sufficient. 

Let (ALP) be the linear program obtained by 
augmenting (LP) with the odd circuit constraints 
(2) and let XALp(G) be its optimal value. 

Theorem 3. If G is 3-regular and X (G) = 4, then 
XALp(G) > 3. 

Proof. We prove the contrapositive. Suppose 
XALp(G) = 3. Since x(G) = 4, every optimal solu- 
tion to ALP is fractional. By hypothesis, in any 
such optimal solution x*,  we have ~x~ = 3. Since 
[ E I = ~-1 V I, if x j* > 0 then the corresponding 
matching contains ½iV] edges, i.e. each column 
with positive weight corresponds to a perfect 
matching. Now delete one of the these perfect 
matchings with positive weight from G. What re- 
mains is a 2-factor, i.e. a subgraph G'  that consists 
of a set of disjoint cycles. Moreover, the sum of 
the matching weights that cover the edges of G' is 
strictly less than 3. 

There are 2 cases: 
1. If all of the cycles of G'  are even, then 

x ( G ' )  = 2 and the deleted matching gets a third 
color so that x(G) = 3, which is a contradiction. 

2. If G' contains at least one odd cycle, then 
each of these cycles has the sum of the matching 
weights that cover it strictly less than 3. Thus the 
hypothesized optimal solution to (ALP) is not 
feasible because an odd circuit constraint is 
violated, which also is a contradiction. 

Hence XALp(G) > 3. [] 

When G is 3-regular, XLp(G) = 3 and the opti- 
mal solution to LP is fractional, we can use Theo- 
rem 3 to solve the separation problem for the odd 
circuit constraints. We delete a perfect matching 
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with positive weight from G and then we either 
find a 3-coloring or a violated odd circuit con- 
straint. Since the number of odd circuit con- 
straints is bounded, this iterative procedure 
terminates finitely with a 3-coloring or a proof 
that 4-colors are required. In the later case a 
4-coloring can be constructed efficiently as noted 
above. In the next section we give an algorithm 
that uses this separation scheme to solve (ALP) 
for 3-regular graphs. 

Theorem 3 generalizes to graphs of any chro- 
matic index. Let ~k- i  be the family of graphs 
with maximum degree equal to k -  1 and with 
chromatic index equal to k. For graph G the 
inequalities (2) generalize to 

xj>_k 
( j:  Mt(5 t t  4:,g } 

for all subgraphs H of G with H ~ Nk-1- (3) 

Now let (ALP k) be the linear program obtained 
by augmenting (LP) with the constraints (3) and 
let XALe~(G) be its optimal value. 

Theorem 4. I f  A ( G )  = k and x ( G )  = k + 1, then 
XALP~ • k. 

The proof is essentially the same as that of 
Theorem 3. However, whereas separation for k = 3 
simply amounts to checking the components of a 
2-regular graph for an odd circuit, separation for 
k > 3 appears to be much more difficult. 

5. A row and column generation simplex algorithm 
to solve (ALP) for 3-regular graphs 

To solve (ALP) by a simplex algorithm re- 
quires: 

1. A separation routine for recognizing violated 
odd circuit constraints. 

As discussed in Section 4, this routine is simple 
and fast since it just involves deleting a matching 
with positive weight and then checking whether 
the resulting subgraph of G, which is a collection 
of disjoint circuits, contains any odd circuits. (Note 
that all such odd circuits have at least 5 nodes 
since, as we remarked previously, the odd circuit 
constraints for triangles are implied by the con- 
straints of (LP).) In fact, it is computationally 
efficient to repeat this procedure for each match- 

ing of positive weight until either a collection of 
all even disjoint circuits is found yielding a 3-col- 
oring of G, or all such matchings have been con- 
sidered. In the later case, all of the violated odd 
circuit constraints that have been identified can be 
added to the linear program. Our approach is to 
add them one at a time because it alleviates some 
of the difficulties associated with the column gen- 
eration. 

2. A pricing routine for finding a column to 
enter the basis or proving optimality. 

When no odd circuit constraints are present the 
pricing problem is a weighted matching problem. 
However, when the linear program contains some 
odd circuit constraints, the pricing problem is a 
weighted matching problem with additional varia- 
bles and constraints. In particular let w be the 
vector of dual variables on the edge constraints, u 
be the vector of dual variables on the existing odd 
circuit constraints. Then the pricing problem can 
be written as 

(PR) z(w, u)=max Y'~ weye+ ~_,Uc~ c 
e E E  C 

Y'~ y e < l  f o r v ~ V ,  
eES((v)) 

e ~ E ( S )  

for odd sets S ___ V 

(blossom inequalities), 

~r c - ~ y~ < 0 all existing circuits C, 
e ~ C  

~r c ~ {0, 1 } all existing circuits C, 

y e~  (0 ,1}  a l l e ~ E ,  

where E(S)= (e  ~ E: both ends of e in S) .  
The linear programming relaxation of (PR) with 

0 < 7r c < 1 and 0 < Ye < 1, denoted by (LPR), can 
be solved by a simplex algorithm using a sep- 
aration routine for the blossom inequalities, see 
Padberg and Rao [11]. This approach has been 
shown to be computationally efficient for weighted 
matching problems by Gr~Stschel and Holland [5]. 
A flowchart of the algorithm is given in Figure 1. 

Let 5(w, u) be the optimal value of (LPR). If 
5(w, u ) <  1, then the current solution is optimal 
to the given relaxation of (ALP) and therefore 
X = 4. On the other hand, if 5(w, u) > 1, we need 
either to find a feasible integer solution with 
weight > 1 to identify a column to enter the basis, 
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or to establish that z(w, u) < 1 to prove optimal- 
ity of the current solution. The work is already 
done for us if the solution found to (LPR) hap- 
pens to be integral. If it is not integral, we first 
check for violated blossom inequalities and resolve 
the LP if any are found. If there are no violated 
blossom inequalities, we use the pivot and comple- 
ment heuristic of Balas and Martin [1] to attempt 
to find an integral solution with weight > 1. If this 
fails we continue the solution of (PR) by branch- 
and-bound until we either find a feasible solution 
of weight > 1 or show that none exists. 

6. Computational results 

The algorithm is written in FORTRAN and 
was run on the IBM 9375 under VM/IS .  Its major 
building blocks, XMP and ZOOM, consist, re- 
spectively, of a simplex method for linear pro- 
gramming and branch-and-bound routine for 
zero-one integer programming. 

We have tested the algorithm on five sets of 
randomly generated 3-regular graphs, ranging from 
20 to 60 nodes, and we report the results for five 
nontrivial graphs of each size. A graph G is said to 

initialize with columns ] 
of A constituting a cover / 

/ 

solve LP relaxation L_. 

Y 

~violated odd ~ N 
circuit / 

Y 

] add a column I_ 
I I -  

r ='/solve relaxation ( 
/ of (LPR) 

add a | 
violated 
inequa ty - 

--]add a violated inequality 

x = 4  ~ - -  

r ? N 

violated " \  
Y [ blossom \ 

heuristics 

~ intoner sol 
with'-iz > 1 ) 

I" 
branch & bound 

Fig. 1. Row and column generation simplex algorithm for 3-regular graphs. 
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be trivial if the solution to the initial linear pro- 
gram (without row or column generation) im- 
mediately yields x(G) = 3. In the random graphs 
each possible edge occurs with equal probability. 
In the process of generating such a graph, when a 
node reaches degree 3, the probability of choosing 
edges incident to it are set to zero. 

We also have tested the algorithm on five 3-reg- 
ular graphs whose chromatic indices are 4, namely 
the Petersen graph, the double-star snark and 
flower snarks with 12, 20 and 28 nodes. A snark is 
a 3-regular graph whose chromatic index is 4 and 
whose girth is at least five. For more details about 
these graphs, see Fiorini and Wilson [4]. 

Test results are shown in Table 1 and Table 2. 
Table 1 gives counts of cuts and columns gener- 
ated. The number of generated columns is broken 
down between before and after odd circuit cut 
generation, and the after count is divided among 
those found in the LP, heuristic, and branch-and- 

bound phases. Table 2 gives the elapsed time for 
each part of the algorithm, i.e. solving the linear 
program, generating columns, and finding violated 
odd circuit constraints. For the random graphs, 
the first number in a cell is the maximum count or 
time, the second is the average and the third is the 
minimum over the five problems in the set. 

For 3-colorable graphs, the computations can 
be stopped when a 2-factor consisting of even 
circuits has been identified, see column D of Table 
2. But we have added all the violated odd circuit 
constraints, unless we can decide the chromatic 
index is 4, to see how many cuts are needed and if 
an integer solution can be found by adding the 
cuts. If the chromatic index is 4, we stop the 
computation without actually generating a color- 
ing, although it would be trivial to do so. 

Not  surprisingly, the chromatic index for all of 
the randomly generated graphs turned out to be 3. 
Moreover, these problems are easy to solve since 

Table 1 
Compiled data for 3-regular graphs 

Random # of odd # of Total # of Before After LP Heuristic Branch-and-bound 
graphs circuit blossom columns cuts cuts phase phase phase 

cuts cuts generated 

1 

IV = 20 

2 

IV =30 

3 
IV = 4 0  

4 

IV =50 

5 
I V = 60 

Petersen 
V =10 

Double star 
i v l  =30 
Flower snark 

i v l  =12 
Flower snark 
IVI = 2 0  
Flower snark 

IVI =28 

0 6 10 10 
0 3.6 9.4 9.4 
0 2 8 8 

15 13 40 19 
5.6 6 25.2 17.2 
1 2 18 15 

9 14 34 24 
5.8 7.4 31.2 21.8 
3 3 28 20 

25 51 81 31 
18.2 17 59.4 29 
10 5 43 27 

22 31 74 33 
15.8 18.6 59 32.6 

7 8 44 32 

1 0 7 6 

27 21 79 17 

1 1 9 7 

12 4 30 10 

66 3 104 16 

0 0 0 0 
0 0 0 0 
0 0 0 0 

23 7 9 7 
8 3.2 2.6 2.2 
1 0 0 0 

13 8 4 4 
9.4 5.6 2.2 1.6 
4 0 0 0 

51 16 26 11 
30.4 13.2 11.8 5.4 
14 10 1 1 

41 24 13 5 
26.4 16.6 7.4 2.4 
12 11 1 0 

1 0 0 1 

62 8 8 46 

2 1 0 1 

20 6 3 11 

88 23 15 50 
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Table 2 
Compiled times in seconds on the IBM 9375 
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Random Solving Column Odd circuit 
graphs LP's generation cut finding 

(A) (B) (C) 

Finding the Total 
chromatic A + B + C 
index 
(D) 

1 2.4 3.4 0 5.6 5.8 

I V I = 20 2.3 3.2 0 5.2 5.5 
2.2 2.7 0 4.5 4.9 

2 16.8 90.7 1.1 12.3 108.6 
t V t = 30 7.8 33.4 0.6 11.1 41.8 

4.3 13.8 0.1 9.2 18.2 

3 21.1 73.3 1.6 27.8 96.0 
I V I = 40 15.9 45.6 0.8 22.0 62.3 

14.1 34.7 0.5 17.6 49.3 

4 124.1 485.5 4.2 40.4 613.8 
I V I = 50 79.8 207.7 3.3 36.6 290.8 

42.0 55.3 1.7 33.8 99.0 

5 159.4 276.3 5.9 92.8 441.6 
I V[ = 60 108.9 181.6 4.6 62.0 295.1 

52.5 52.7 2.3 50.2 107.5 

Petersen 2.1 2.7 = 0 4.8 4.8 

IVl =10 
Double star 52.1 574.4 1.4 627.9 627.9 
I r l  = 3 0  
Flower snark 2.1 3.6 ~ 0 5.7 5.7 

IV] =12 
Flower snark 7.0 51.3 0.5 58.8 58.8 

IvI  = 2 0  
Flower snark 288.6 788.6 4.5 1081.7 1081.7 

Ivl =28 

in every instance the initial LP solution yielded a 
perfect matching with positive weight that was 
part  of a 3-coloring. In other words, we can think 
of the LP solution as being an efficient and relia- 
ble indicator for determining some perfect match- 
ing in a 3-coloring, and once such a matching is 
determined no cuts are needed. On the other hand, 
the cuts were not very effective for determining 
integer solutions. We found integer solutions in 
solving the linear program for only three of the 
test problems, two in problem set 1 and one in 
problem set 2, which implies that the edge con- 
straints and the odd circuit constraints are not 
close to describing P(G) for the 3-colorable, 3- 
regular graphs. 

Finally, we note that it generally takes more 
time to generate columns than to solve the linear 
program, and generally many cuts are needed to 
show that the snarks require 4 colors. 
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