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Abstract

We consider the ATM switching node location problem. In this problem, there are two kinds of facilities, hub facilities and remote facilities, with different capacities and installation costs. We are given a set of customers with each demand requirements, a set of candidate installation sites of facilities, and connection costs between facilities. We need to determine the locations to place facilities, the number of facilities for each selected location, and the set of customers to be connected to hub facilities for each hub installation site via remote facilities with minimum cost, while satisfying demand requirements of each customer. 

We formulate this problem as a general integer programming problem and solve it to optimality. In this paper, we present a preprocessing procedure to tighten the formulation and develop a branch-and-price algorithm. In the algorithm, we consider the integer knapsack problem as the column generation problem. Computational experiments show that the algorithm gives optimal solutions in a reasonable time.
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1 Introduction 

In the past few years, many researches to implement broadband integrated services digital network (B-ISDN) have been conducted. To support these B-ISDN service requirements, ATM (Asynchronous Transfer Mode) has been proposed as the target technology. ATM is a packet-oriented transfer mode in which information is organized into a fixed-size entity known as a cell. ATM technology combines the flexibility of traditional packet-switching technology with the determinism of TDM (time division multiplexing) [18]. 
To carry these flexible B-ISDN services, we should install ATM switching nodes. In this paper, we consider the ATM-MSS (ATM-MAN Switching System) Node Location Problem (ANLP) for the PVC (Permanent Virtual Connection) based leased line network. In this network, services are provided at a constant bit rate (CBR) or variable bit rate (VBR). In this paper, the QoS and/or statistical multiplexing are considered through the equivalent cell rate (ECR).

First, we consider the switching systems called the ATM-MSS switching nodes. We are given two kinds of facilities: Hub Switching Node (HSN) and Remote Switching Node (RSN). Each HSN accommodates 3~5 RSNs in the star topology. Each RSN accommodates user demands with various interfaces such as DS1E (2.048Mbps), DS3 (44.736Mbps) and STM-1 (155.520Mbps), with the capacity of 284 DS1E. According to these functions, we may call the HSN the hub facility and the RSN the remote facility. For each candidate site of facilities, we may install more than one facility. 

Then, ANLP is defined as follows. We are given hub candidate sites (H), remote candidate sites(R) and users (U). Each user 
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Figure 1. Overall Procedure of the Branch-and-Price algorithm
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 should be connected to the remote facilities installed at one remote candidate site to satisfy demand requirement (ru). The remote facilities connected to a user should be connected to the hub facilities installed at one hub candidate site. Each hub facility has a fixed cost (FH) and has a finite capacity (bH), which is set to be the number of remote facilities per hub facility. Each remote facility has a fixed cost (FR) and has a finite capacity (bR) in DS1E. Connection cost 
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 arises when the unit demand (DS1E) of a user u is satisfied by the flow from the remote facility installed at a remote candidate site r. The connection cost 
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 arises when a remote facility installed at a remote candidate site r is connected to the hub facility installed at a hub candidate site h. 

Then, we need to determine the number of hub facilities and the number of remote facilities for each candidate site and the allocation of users to hub candidate sites via remote candidate sites with minimum total cost, which is the sum of facility installation costs and connection costs. 
Facility location problems have received a great deal of attention for recent several decades. Sa [14], Davis and Ray [5], Ellenwein [7], Akinc and Khumawala [2] have studied the general capacitated plant location problem. But in most formulation of facility location problems, a single stage distribution system has been considered. 

For the two stages distribution system where commodities are delivered from plants to customers via warehouses, Geoffrion and Graves [8] considered a multicommodity two stages problem with the restriction that each customer should be served by only one warehouse. Tcha and Choi [17] also studied the single commodity two stages problem without aforementioned restriction. But since customers and plants are given, they determined warehouse locations only.

Kaufman et al. [10] have studied the problem of locating simultaneously both plants and warehouses with no capacity restrictions. For the problem with single assignment restriction, Neebe and Rao [12], Dee and Lieman [6], Barcelo and Casanovas [3], and Tang et al. [16] are widely known.

Recently, the cutting plane method using polyhedral structure has been used widely to solve hard combinatorial optimization problems. Survey on this method can be found in Nemhouser and Wolsey [13]. Crowder et al. [4] and Johnson et al. [9] reported the success of solving large scale 0-1 programming problems arising from planning models using this method. Especially Aadal et al. [1] and Leung et al. [11] have derived some valid inequalities for the capacitated facility location problem. Delayed column generation approach incorporated with the branch-and-bound procedure has also become a new technique for solving the combinatorial optimization problem. For example, Savelsbergh [15] has reported the success of solving the generalized assignment problem. 

In this paper, we use the delayed column generation and branch-and-price approach. We formulate this problem using tree variables. To solve the linear programming relaxation of the formulation, which has exponentially many variables, we solve the pricing subproblem, which is the bounded variable knapsack problem. Although the subproblem is NP-hard, we can solve it using the pseudo polynomial-time algorithm. Moreover, to tighten the bound of the LP relaxation, a preprocessing procedure is devised by deriving some valid inequalities.  

The remainder of the paper is organized as follows. In section 2, we state the notations for the problem description and formulate the problem using the concept of pattern generation. In section 3, the column generation subproblem is considered. In section 4, we present a preprocessing procedure to tighten the bound of the LP relaxation of the problem and present the augmented linear programming. In section 5, we present the branch-and-price algorithm and implementation details. In section 6, we show the computational results of our algorithm. Finally, we give concluding remarks.

2 Formulation of The Problem

  In this section, we present the formulation of ANLP. Since each user should be connected to a hub candidate site via a remote candidate site, we can consider a pattern such that some users are connected to a hub candidate site via a remote candidate site. We call this allocation pattern as a tree. For each fixed hub candidate site h and the fixed remote candidate site r, there can be many allocation patterns. Then ANLP can be modeled as the problem of finding the set of trees and an assignment of facilities for each selected hub candidate site and the selected remote candidate site to minimize the cost while satisfying the demand requirements of the users. 
  First, we give some notations to be used in the formulation of the problem.
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  : the number of remote facilities used in tree t, which are located at the remote candidate site r, and connected to hub candidate site h.

Using the above notation, ANLP can be formulated as follows. 

(MP) 
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Note that 
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 is the cost of tree t for hub candidate site h and remote candidate site r. The decision variable 
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=1 if tree t for hub candidate site h and remote candidate site r is selected, otherwise it is 0. The decision variable 
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 represents the number of hub facilities to be located on the hub candidate site h. 

  Constraints (1) imply that each user should be assigned to precisely one tree. Constraints (2) imply that if the hub candidate site h is selected as a hub site, then hub facilities should be located on the selected hub candidate site to accommodate the remote facilities attached to it. Constraints (3) imply that at most one feasible tree can be selected for the pair of the hub candidate site h and the remote candidate site r. 

MP has exponentially many variables. But we can solve its LP relaxation by the (delayed) column generation method. 

3 Column Generation Problem 
  In this section, we give an explanation of column generation problem and the algorithm to solve it. Let MPLP be the linear programming relaxation of MP. Initially, we need a feasible basis for MPLP to use the column generation method. If it is difficult to find an initial feasible solution, we can introduce artificial variables with big cost coefficients. We will mention how to find an initial feasible solution to MPLP in section 5.

Given a feasible basis to MPLP, we need to generate columns to enter the basis. The column generation procedure to solve the MPLP is very similar to the one used for the generalized assignment problem[15]. Let 
[image: image21.wmf]u

a

 be the dual variable associated to the constraint in (1) for each user u. Let
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 be the dual variable associated to constraints in (3) for each remote candidate site r and hub candidate site h. Also let (
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In other words,
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. Then the column generation problem associated to hub candidate site h and remote candidate site r can be formulated as follows.
(TGP(rh)) 
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 is connected to the hub candidate site h via the remote candidate site r, otherwise it is 0. The decision variable yrh represents the number of remote facilities to be located on the remote candidate site r and connected to the hub candidate site h. 
Note that the TGP(rh) is a bounded variable knapsack problem. An upper bound (UB) on the value of 
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 or it may be given a priori by the designer of the network. Once UB is given, we can replace 
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, which results in the bounded variable knapsack constraint. To solve TGP(rh), we may use the dynamic programming which gives a pseudo polynomial-time algorithm. For more results about this problem, refer to Nemhauser and Wolsey[13]. If the resulting value of the TGP(rh) is greater than 
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, then the generated column can be added to the current formulation. Otherwise, no column is generated with respect to the pair of remote candidate site r and hub candidate site h.

4 Preprocessing and The Augmented LP
4.1 Preprocessing 

In this section, we propose two valid inequalities which are used to tighten the initial formulation. The procedure is based on the concept of the minimum demand requirements. Using the procedure, we can determine the minimum number of remote facilities and the minimum number of hub facilities needed to satisfy the demands of users. 

Proposition 1.  Following inequality is valid for the feasible solutions of MP.
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(Proof)  Total demands of users, 
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 number of remote facilities. Hence the above inequality should be satisfied.  (
Proposition 2.  Following inequality is valid for ANLP
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(Proof)  We know that each user should be connected to a hub candidate site via a remote candidate site. Proposition 1 also says that at least 
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 number of remote facilities should be installed. Since these facilities should be connected to hub facilities and the capacity of a hub facility is 
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 number of hub facilities. So the above inequality should be satisfied. (
4.2 The Augmented LP 

Now, consider the linear programming relaxation of the problem obtained by adding the valid inequalities to MPLP. The augmented LP relaxation is as follows.

(AMP) 
[image: image49.wmf] 

min

)

(

)

(

å

å

å

å

Î

Î

Î

Î

+

H

h

h

NR

r

rh

T

t

rh

t

rh

t

H

h

h

H

x

c

u

F


      
[image: image50.wmf])

3

(

),

2

(

),

1

(

s.t.


      
[image: image51.wmf])

4

(

)

(

)

(

ú

ú

ù

ê

ê

é

³

å

å

å

å

Î

Î

Î

Î

R

U

u

u

H

h

h

NR

r

rh

T

t

rh

t

rh

t

b

r

x

m


      
[image: image52.wmf])

5

(

ú

ú

ù

ê

ê

é

ú

ú

ù

ê

ê

é

³

å

å

Î

Î

H

R

U

u

u

H

h

h

b

b

r

u


      
[image: image53.wmf]H

h

h

NR

r

rh

T

t

x

rh

t

Î

Î

Î

³

),

(

),

(

  

all

for 

0


      
[image: image54.wmf]H

h

u

h

Î

³

  

all

for 

0


Let 
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 be the dual variable associated with the constraint in (4). If we fix a hub candidate site h and remote candidate site r, then the column generation problem for AMP can be formulated as the following.
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  If the resulting value of the TGP(rh) is greater than 
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5 Branch-and-Price Algorithm

5.1 Overview of the Algorithm

In this section, we give a brief and overall explanation of our algorithm. First, we construct the initial formulation of AMP using artificial variables and initial feasible solutions. After preprocessing and solving the initial AMP, we decide if the present solution is dual feasible. If it is not, new columns are generated and added to AMP. This process continues until no such columns are found. If the present solution is dual feasible, we have solved the problem at node 0 in the enumeration tree Then we check if the solution obtained by solving the last LP is integral. If we have obtained an integral solution, we are done with an optimal solution of ANLP. Otherwise, we have to initiate the branch-and-bound procedure to find an optimal integer solution. Column generation is also allowed throughout the branch-and-bound tree, which is called the branch-and-price procedure. 
Solving the column generation problem in the branch-and-bound procedure will be given in section 5.3. The overall procedure of the algorithm is presented in Figure 1.
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5.2 Initial feasible solution
To start the column generation procedure, we need to have an initial feasible solution to AMP. We can obtain an initial feasible solution by finding some feasible trees and use the trees as the initial columns in the formulation. Note that a feasible tree can also serve as an incumbent solution in the branch-and-price procedure. To find a feasible solution, we use a simple heuristic procedure.

We also introduce artificial variables with big cost coefficient into the formulation that guarantees the feasibility of AMP. It may redundant to use artificial variables when a feasible solution exists. However, artificial variables are always needed when branching is done. Followings are the overall procedure for finding a feasible solution. 

Greedy Heuristic Algorithm
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Step 2
(Compute the number of remote facilities)
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Step 3
(Compute the number of hub facilities)
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5.3 Branching rule 

When the branch-and-price algorithm is used, the main difficulty arises in the column generation after some subset of variables is fixed to 0. To prevent the generation of columns that were set to 0, a careful branching rule should be used. In our case, we use the following branching rule. Let us define, 
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The variables are considered implicitly for branching purpose only. Note that 
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 is the set of trees containing user u and not having hub candidate site h and remote candidate site r. In this case, a similar method can also be used for column generation. 

In branching, we also have to consider the variables 
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  When we select variables for branching, we select the variable 
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 whose value is nearest to 0.5 first. If all of the variables are integral, we then select the connection (u, r, h) such that 
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 is nearest to 0.5 first in the similar way. We use the best bound rule when we select the node to solve in the enumeration tree.

6 Computational Results

We have tested our algorithm on some randomly generated problem instances and two real problems. The randomly generated problems consist of several problem classes. For each problem class, we generated 15 problems. Candidate sites and users are randomly generated from a discrete uniform [0, 30] by [0, 30] plane. The demands of users are randomly generated from a discrete uniform [1, bR
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1.5]. The connection cost between a candidate site and a user is set to be the Euclidean distance. The connection cost between a remote candidate site and a hub candidate site is set to be the product of the Euclidean distance and the maximum capacity of a remote facility.
In the test, we consider two cases. First, we consider distance limit as follows. If the distance between users and remote candidate sites is farther than 15, we set them not to be connected. We also apply it to the relations between remote candidate sites and hub candidate sites. In this case, the graph that consists of users and candidate sites can be sparse. Second, we do not consider distance limit. The distances are unlimited. In this case, the graph that consists of users and candidate sites can be dense. Then, we consider the facility parameters. We set hub facility cost to be 300 and remote facility cost to be 100. We also assume that bH=5(remote facility/hub facility) and bR =284 DS1E, referring to the hub facility capacity and remote facility capacity of ATM-MSS. The test problems were solved on Pentium PC(333MHz) and we used CPLEX 4.0 callable mixed integer library as the LP solver. 

Table 1 and Table 2 summarize the computational results of our algorithm. The computational results with distance limit on small sized problems are shown in Table 1 and those without distance limit on large sized problems are shown in Table 2. In these tables, the column #LP refers to the total number of LP’s solved in ANLP. The column #COL refers to the total of initial columns and generated columns. The columns Gap0, Gap1 refer to the relative ratio between the integral optimum and the objective values obtained by solving the final LP without preprocessing, the final LP with preprocessing at node 0 respectively. The column #Node refers to the number of nodes in the enumeration tree of the branch-and-price algorithm. The column Time refers to the execution time in seconds needed to solve the problem. The columns NOPRE refers to the columns generated when no preprocessing is applied. The columns PRE refers to the columns generated when preprocessing is applied.  

Table 1. Computational results with distance limit 

	(|H|,|R|,|U|)
	
	#LP
	#COL
	Gap0
	Gap1
	#Node
	Time

	
	
	
	
	(%)
	(%)
	NOPRE
	PRE
	NOPRE
	PRE

	
	Avg
	26.5 
	99.7 
	1.31 
	0.73 
	3.9 
	3.5 
	1.42 
	1.25 

	(2,5,10)
	Max
	45.0 
	141.0 
	2.48 
	1.78 
	8.0 
	8.0 
	2.36 
	1.98 

	
	Min
	11.0 
	66.0 
	0.39 
	0.00 
	2.0 
	0.0 
	0.82 
	0.44 

	
	Avg
	52.5 
	195.4 
	0.89 
	0.70 
	4.4 
	4.0 
	2.53 
	2.30 

	(2,5,15)
	Max
	104.0 
	371.0 
	2.41 
	2.01 
	8.0 
	8.0 
	5.44 
	4.73 

	
	Min
	19.0 
	75.0 
	0.12 
	0.00 
	2.0 
	0.0 
	1.21 
	0.77 

	
	Avg
	67.7 
	415.6 
	0.84 
	0.62 
	4.5 
	4.0 
	3.53 
	3.20 

	(3,8,20)
	Max
	133.0 
	655.0 
	1.59 
	1.14 
	8.0 
	10.0 
	5.77 
	6.31 

	
	Min
	26.0 
	191.0 
	0.19 
	0.00 
	2.0 
	0.0 
	1.98 
	1.10 

	
	Avg
	131.5 
	665.3 
	0.71 
	0.52 
	6.5 
	6.0 
	7.29 
	7.11 

	(3,8,25)
	Max
	254.0 
	922.0 
	1.29 
	1.24 
	14.0 
	14.0 
	13.51 
	13.41 

	
	Min
	47.0 
	408.0 
	0.17 
	0.00 
	2.0 
	0.0 
	3.52 
	2.31 

	(2,9,28)
	*
	111.0 
	1122.0 
	0.53 
	0.44 
	4.0 
	4.0 
	6.81 
	6.98 

	(3,9,28)
	*
	273.0 
	1775.0 
	2.93 
	2.80 
	42.0 
	42.0 
	20.99 
	19.94 


     * : The real problem instance 

In Table 1, the average CPU time needed to solve the problem to optimality does not exceed 5 seconds when |U|=15, 7 seconds when |U|=20, and 15 seconds when |U|=25. Real problem instances are also solved in a reasonable time. But, the preprocessing procedure is not effective much in the test on the spare graph. 

Table 2 shows that the preprocessing procedure yields better results in terms of gaps and generated nodes and execution time compared to the case where, no such procedure is applied. The number of nodes of the enumeration tree decreases when preprocessing procedure is applied. 

The computational results show that the algorithm preformed and the preprocessing procedure reduced the gap considerably, especially in Table 2. The number of columns increased as the size of problem instance increases. 

 Table 2. Computational results without distance limit 

	(|H|,|R|,|U|)
	
	#LP
	#COL
	Gap0
	Gap1
	#Node
	Time

	
	
	
	
	(%)
	(%)
	NOPRE
	PRE
	NOPRE
	PRE

	
	Avg
	174.9
	685.7
	0.85
	0.25
	949.0
	42.0
	280.08
	11.24

	(2,8,20)
	Max
	1208.0
	1813.0
	2.46
	0.61
	9324.0
	532.0
	(1)2526.68
	93.76

	
	Min
	43.0
	486.0
	0.27
	0.00
	2.0
	0.0
	3.57
	1.98

	
	Avg
	151.6
	1053.9
	0.35
	0.06
	88.6
	5.2
	314.21
	14.33

	(2,8,30)
	Max
	299.0
	1307.0
	0.69
	0.29
	488.0
	34.0
	(5)2564.52
	30.32

	
	Min
	90.0
	829.0
	0.00
	0.00
	0.0
	0.0
	20.71
	7.80

	
	Avg
	509.9 
	2242.5 
	0.34
	0.14 
	98.4
	65.1 
	166.11
	119.46 

	(2,8,40)
	Max
	2873.0 
	5768.0 
	0.77
	0.39 
	800.0
	774.0 
	(4)634.88
	(1)620.71 

	
	Min
	190.0 
	1576.0 
	0.05
	0.00 
	2.0
	0.0 
	54.43
	27.51 

	
	Avg
	140.5
	1033.0
	0.81
	0.52
	7.7
	6.4
	11.09
	8.85

	(3,10,20)
	Max
	242.0
	1184.0
	1.64
	1.21
	14.0
	14.0
	23.67
	15.99

	
	Min
	40.0
	787.0
	0.24
	0.00
	2.0
	0.0
	6.54
	2.09

	
	Avg
	256.6
	1827.3
	0.51
	0.35
	20.6
	14.9
	45.84
	28.64

	(3,10,30)
	Max
	522.0
	2283.0
	0.78
	0.78
	58.0
	38.0
	(1)126.72
	96.89

	
	Min
	107.0
	1448.0
	0.08
	0.00
	2.0
	2.0
	11.37
	10.16

	
	Avg
	446.7 
	2979.3 
	0.36
	0.20 
	15.9
	13.6 
	240.34
	159.09 

	(3,10,40)
	Max
	995.0 
	3793.0 
	0.67
	0.42 
	56.0
	48.0 
	2006.48
	719.09 

	
	Min
	240.0 
	2389.0 
	0.05
	0.00 
	4.0
	2.0 
	50.86
	43.61 

	
	Avg
	119.5
	2214.3
	3.14
	2.91
	10.9
	11.2
	9.29
	9.92

	(5, 15,20)
	Max
	175.0
	2583.0
	6.99
	6.99
	26.0
	24.0
	14.28
	14.78

	
	Min
	80.0
	1952.0
	1.79
	1.79
	6.0
	6.0
	6.64
	6.43

	
	Avg
	247.6
	3735.5
	1.25
	1.10
	12.9
	12.9
	34.71
	35.32

	(5, 15,30)
	Max
	397.0
	4597.0
	1.88
	1.88
	36.0
	36.0
	82.89
	58.16

	
	Min
	157.0
	3003.0
	0.35
	0.35
	6.0
	6.0
	19.83
	22.47

	
	Avg
	376.6 
	6363.0 
	0.93
	0.78 
	14.1
	14.7 
	154.74
	151.43 

	(5, 15,40)
	Max
	517.0 
	7437.0 
	1.45
	1.24 
	28.0
	22.0 
	240.57
	214.81 

	
	Min
	286.0 
	5009.0 
	0.57
	0.47 
	8.0
	12.0 
	67.39
	79.81 


     ( number ) : the number of unsolved problem within 1 hour    

7 Conclusions

In this paper, we proposed a branch-and-price algorithm for the ATM switching node location problem. We showed that the LP relaxation of the problem, which has exponentially many variables, can be solved by column generation. To solve the column generation problem, we used the dynamic programming algorithm. We also devised two valid inequalities as the preprocessing procedure. 
Computational results show that the algorithm can solve practically-sized problems to optimality within reasonable time. This problem can be extended to the case where the number of hub facilities and the number of remote facilities are constrained. It can also be extended to the problem where more than one type of hub facility or remote facility should be considered. 
Solution approach using the tree variables can be also applied to the problems with the two stage distribution system or facility location problems with hierarchical structure.

References

[1] K. Aardal, Y. Pochet and L.A. Wolsey, Capacitated Facility Location: Valid Inequalities and Facets, Mathematics of Operations Research 20 (1995) 562-582.

[2] Akin, U. and Khumawala, B.M., An Efficient B&B Algorithm for the Capacitated Warehouse Location Problem, Management Science 23 (1977) 585-594.

[3] Barcelo, J. and Casnovas, J., A Heuristic Lagrangean Algorithm for the Capacitated Plant LocationProblem, European Journal of Operational Research 15 (1984) 212-226.

[4] H.P. Crowder, E.L. Johnson and M.W.Padberg, Solving large-scale zero-one linear programming problems, Operations Research 31 (1982) 803-834.

[5] Davis, P.S. and T.L. Ray, A Branch-Bound Algorithm for the Capacitated Facility Location Problem, Naval Research Logistics Quarterly 16 (1969) 331-344.

[6] Dee, N. and Liebman J.C., Optimal Location of Public Facilities, Naval Research Logistics Quarterly 19 (1972) 753-759.

[7] Ellwein, L.B. and P. Gray, Solving Fixed Charge Location-Allocation Problems with Capacity and Side Constraints, AIIE Transactions 3 (4) (1971) 290-298.

[8] Geoffrion, A.M. and G. W. Graves, Multicommodity Distribution System Design by Bender’s Decomposition, Management Science 20 (5) (1974) 822-844.

[9] Johnson, E.L., M.M. Kostreva and U. Suhl, Solving 0-1 integer programming problems arising from large-scale planning methods, Operations Research 33 (1985) 803-819.

[10] L. Kaufman, M.V. Eede, and P. Hansen, A Plant and Warehouse Location Problem, Operations Research Quarterly 28 (1977) 547-554.

[11] J.M.Y. Leung and T.L. Magnanti, Valid inequalities and facets of capacitated plant location problem, Mathmatical Programming 44 (1989) 271-291.

[12] A.W. Neebe and M.R. Rao, An Algorithm for the Fixed-Charge Assigning Users to Source Problem, Journal of the Operational Research Society 34 (1983) 1107-1113.

[13] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley and Sons, NY 1988.

[14] Sa, G., B&B and Approximate Solutions to the Capacitated Plant-Location Problem, Operations Research 17, (1969) 1005-1016.

[15] M. Savelsbergh, A Branch-and-Price Algorithm for the Generalized Assignment Problem, Operations Research 45, (1997) 831-841.

[16] Tang, D.T., Woo, L.S. and Bahl, L.R., Optimization of teleprocessing Networks with Concentrators and Multiconnected Terminals, IEEE Transactions on Computers C-27 (7) (1978) 594-604.

[17] D.W. Tcha and W. J. Choi, A New Branch and Bound Algorithm for the Warehouse Location Problem in a Two-Stage Distribution System, Proceedings of International Conference in ISDEMC, Bangkok, Thailand, Nov. 1980. 561-580.

[18] T-H Wu, Fiber Network Service Survivability, Artech House Inc 1992.

� EMBED Word.Picture.8  ���








PAGE  
1

[image: image87.wmf]Yes

Figure 1. Overall Procedure of the Branch-and-Price algorithm
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Figure 1. Overall Procedure of the Branch-and-Price algorithm
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