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The new solution point will always be an interior point because if the solution
point is close to the boundaries, at least one of the functions 1/g,(X) or (—1/x;) will
acquire a very large negative value. Because the objective is to maximize p(X, 1),
such solution points are automatically excluded. The main result is that successive
solution points will always be interior points. Consequently, the problem can always
be treated as an unconstrained case.

Once the optimum solution corresponding to a given value of ¢ is obtained, a
new value of ¢ is generated and the optimization process (using the steepest ascent
method) is repeated. If ¢’ is the current value of 7, the next value, t", must be selected
such that0 < ¢" < ¢'.

The SUMT procedure is terminated if, for two successive values of ¢, the cor-
responding optimum values of X obtained by maximizing p(X, t) are approximately
the same. At this point further trials will produce little improvement.

Actual implementation of SUMT involves more details than have been pre-
sented here. Specifically, the selection of an initial value of ¢ is an important factor
that can affect the speed of convergence. Further, the determination of an initial in-

terior point may require special techniques. These details can be found in Fiacco and
McCormick (1968).

The solution methods of nonlinear programming can generally be classified as either
direct or indirect procedures. Examples of direct methods are the gradient algo-
rithms, wherein the maximum (minimum) of a problem is sought by following the
fastest rate of increase (decrease) of the objective function at a point. In indirect
methods, the original problem is replaced by an auxiliary one from which the opti-
mum is determined. Examples of these situations include quadratic programming,
separable programming, and stochastic programming.
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Appendix A

Review of Vectors and Matrices

A.1 VECTORS

A.1.1 Definition Of A Vector
Letpy, p,, ..., p, be any n real numbers and P an ordered set of these real numbers—
that 1s,

P = (P, Py --s D)

Then P is an n-vector (or simply a vector). The ith components of P is given by p;. For
example, P = (1, 2) is a two-dimensional vector.

A.1.2 Addition {Subtraction) of Vectors

Let
P= (Pppza "'9pn) and Q = (ql’ q2 -5 qn)

be two n-vectors. Then the components of the vector R = (r, r,, ..., r,) such that
R = P £ Q are given by

In general, given the vectors P, Q, and S,
P+Q=Q=P

P+Q)+S=P+(Q+8) (Associative law)

P+(-P)=20

(Commutative law)

(zero or null vector)
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A.1.3 Multiplication of Vectors by Scalars

Given a vector P and a scalar (constant) quantity 6, the new vector

Q=6P = (8py, tp,, ..., 6p,)

is the scalar product of P and 6
In general, given the vectors P and S and the scalars 6 and Y,

6P + S) = 6P + 6S
6(yP) = (6y)P

A.1.4 Linearly Independent Vectors

(Distributive law)

(Associative law)

The vectors P, P,, ..., P, are linearly independent if and only if, for all real 6,

6P =0
j=1

implies that all ¢, = 0. If
2 6P, =0
j=1

for some # # 0, the vectors are said to be linearly dependent. For example, the vectors
P,=(,2) and P,=(2,4)
are linearly dependent because there exist nonzero 6, = 2 and 6, = —1 for which

oP, + 6,P,=0

A.2 MATRICES

A.2.1 Definition of a Matrix

A matrix isa rec-tangular array of elements. The element a; of the matrix A occupies
the ith row and jth column of the array. A matrix with 7 rows and 7 columns is said
to have the order or size m X n. For example,

A= S = ”aij”4><3

is a (4 X 3)-matrix.
A.2.2 Types of Matrices

1. A square matrix has m = n.

Y
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2. An identity matrix is a square matrix in which all the diagonal elements are
one and all the off-diagonal elements are zero. For example, a (3 X 3) iden-

tity matrix is given by

O = O

1 0
ILL=|0 0
0 1
3. A row vector is a matrix with one row and » columns.

A column vector is a matrix with m rows and one column.

5. The matrix A” is the transpose of A if the element a; in A is equal to ele-
ment a; in A” for all i and j. For example, if

e

1 4
A=|2 5
3 6

then

1 2 3
T:
vl T3

6. A matrix B = 0is called a zero matrix if every eclement of B is zero.

7. Two matrices A = |a;] and B = ||b;|| are equal if and only if they have the
same size and a; = b; for alli and j.

A.2.3 Matrix Arithmetic Operations

In matrices only addition (subtraction) and multiplication are defined. The division,
though not defined, is replaced by inversion (see Section A.2.6).

Addition (subtraction) of matrices. Two matrices A = |la,|| and B = [|b,]|
can be added together if they are of the same size (m X n).The sum D = A + Bis
obtained by adding the corresponding elements. Thus,

”dij“an = Haij + bij”an
If the matrices A, B, and C have the same size, then
A=xB=B* A
A=xB=xC)=A=xB)=C
(A =B) = AT = B”

(Commutative law)

(Associative law)

Product of matrices. The product AB of two matrices A = la;l| and
B = ||b;|| is defined if and only if the number of columns of A equals the number of
rows of B. Thus, if A is of the size (m X r), then B is of the size (r X n),where m an
n are arbitrary sizes.
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Let D = AB.Then D is of the size (m X n), and its elements d; are given by

d; = ;;awbh, for all i and j

1 3 5 7 9
A = and B =
|2 4] [6 8 0}
then

D=[13J[579]=’ax5+3x6)ax7+3xs)ax9+3x0)
24]1680] [(2X5+4%X6) 2XT7+4x8) (2X9+4x0)

_123 31 9
34 46 18
In general, AB # BA even if BA is defined.
Matrix multiplication follows these general properties:

For example, if

I,A =AI, = A, wherelisan identity matrix
(AB)C = A(BC)
C(A+B)=CA + CB
(A +B)C=AC + BC
a(AB) = (aA)B = A(aB), « isa scalar

Multiplication of partitioned matrices. Let A be an (m X r)-matrix and
B an (r X n)-matrix. If A and B are partitioned in to the following submatrices

B, | B

A A A 1 12

A=[;1 L2 lﬂ and B=|B, | B,
21 A22 A23

B 31 B32

such that the number of columns of A is equal to the number of rows of B;; for all
and j, then

AXB= [AIIBII + A12B21 + A13B31 } AIIBIZ + A12B22 + ABBZ!Z]

AZlBll + A22B21 + A23B31 | A21B12 + A22B22 + A23B32

For example,

1
O dH+ 2 3 LJ 4+24+24 30

12 37 [4
10 5| |1|=|77 = | T4 407 | = | 44
0 51[1
4 + +
215 64 |8 [2]( ) [5 6} [8] [8] [53] 61
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A.2.4 Determinant of a square matrix

Given the n-square matrix

an ap a,
A= ay ‘1:22 ay,
anl an2 ann
consider the product
P, = 048y, Ay,

the elements of which are selected such that each column and each row of A is rep-
resented exactly once among the subscripts of Pij Next define € )y, equalto +1
if jij>...j, 1s an even permutation and —1 if jj,...j, is an odd permutation. Thus the
scalar

> iy i Piiy i,

p
is called the determinant of A, where p represents the summation over all n! per-
mutations. The notation det A or |A| is used to represent the determinant of A.
To illustrate, consider

Then
|A| = a,1(ay, a5 — ay a) — ay(ay @33 — as ay) + ap(ay az, — a,ay)

The properties of determinants include the following:

1. If every element of a column or a row is zero, then the value of the deter-
minant is zero.

2. The value of the determinant is not changed if its rows and columns are in-
terchanged.

3. If B is obtained from A by interchanging any two of its rows (or columns),
then|B| = —|A|.

4. If two rows (or columns) of A are identical, then |[A| = 0.

5. The value of |A| remains the same if scalar « times a column (row) vector is
added to another column (row) vector.

6. If every element of a column (or a row) of a determinant is multiplied by a
scalar a, the value of the determinant is multiplied by .

7. If A and B are two n-square matrices, then

|AB| = |A] |B]
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Deﬁn'ition of t}'ze Minor of a Determinant. The minor Mj; of the element a;; in
the determinant |A[is obtained from the matrix A by striking out the ith row and jth
column of A. For example, for

a a a a
— 22 23 _ 11 13
Mll - B M22 -

az 4 a3 s

Definition of the Adjoint Matrix. Let A; = (—1)"*/ M;be defined as the cofac-
tor of the element a;; of the square matrix A. Then, the adjoint matrix of A is defined

as
Ay An - Ay
adj A = 4, = | Az A Ay
A, A, A,
For example, if
1 2 3
A=(2 3 2
3 3 4

them, Ay = (-1’3 X 4 —2 X 3) = 6,A;, = (-1’2 X 4 — 2 X 3) = 2, ..., or

6 1 -5
adjA=|-2 -5 4
-3 3 -1

A.2.5 Nonsingular Matrix
A matrix is of a rank r if the largest square array in the matrix with nonvanishing de-

terminants is of size r. A square matrix whose determinant does not vanish is called
a full-rank or a nonsingular matrix. For example,

1
A=1]2
3

D W N
~N A~ W

is a singular matrix because

|A| =121 — 20) —2(14 - 12) + 3(10 — 9) = 0
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But A has a rank » = 2 because

1 2
=—-1%
[2 3} 1#0

A.2.6 The Inverse of a Matrix

If B and C are two n-square matrices such that BC = CB = I, then B is called the in-
verse of C and C the inverse of B. The common notation for the inversesis B and C ™.

Theorem
IfBC = I1and B is nonsingular, then C = B~', which means that the inverse is unique.

Proof. By assumption,

BC=1
then
B 'BC =BI
or
IC=B"1
or
Cc=B"

Two important results can be proved for nonsingular matrices.

1. If A and B are nonsingular n-squre matrices, then (AB)™ = B'A™"
2. If A is nonsingular, then AB = AC implies that B = C.

Matrix inversion is used to solve # linearly independent equations. Consider

A Ap T G, X1 b,
ay ap Gy || %| | b
an ) L, Xn b”

where x; represents the unknowns and a; and b, are constants. These 7 equations can
be written in matrix form as

AX =b
Because the equations are independent, it follows that A is nonsingular. Thus
ATAX=A"" or X=A"b

gives the solution of the » unknowns.
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A.2.7 Methods of Computing the Inverse of a Matrix

Adjoint matrix method. Given A a nonsingular matrix of size n,

An Ay 0 A,
1 1 A, A oA
-1 A — 12 2 n2
ATSTAT AT TAT | :
Aln AZn Ann
For example, for
1 2 3
A=(2 3 2
3 3 4
6 1 -
adiA=|-2 -5 4| and |A|=-7
_3 3 —
Hence
6 1 5
6 1 -5 ; Z Z
-1 _ _ _ - o hudl —_
A =7 _i g ‘1‘ 7 7 7
3.3 1
7 7 7

Row operations (Gauss-Jordan) method. Consider the partitioned ma-
trix (A | I), where A is nonsingular. By premultiplying this matrix by A, we obtain

(AT'A|ATD) = (1]A7Y

Thus, by multiplying a sequence of row transformations, the matrix A is changed to
I'and Iis changed to A™".

For example, consider the system of equations:

1 2 3| x 3
2 3 20lx, |=|4
3 3 4] |x 5

The solution of X and the inverse of basis matrix can be obtained directly by
considering

ATY(A|I]b) = (I|A"|A'p)

Thus, by a row transformation operation, we get
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1 2 3|1 0 0]3
2 3 2|10 1 0!4
3 3 4]0 0 115

Iteration 1

0 -1 -4 1 0]-2
0 -3 -5|-3 1] —4]

Iteration 2
1 -5|-3 2 0]-1]

Iteration 3

I 6 1 53]
L oo =3 7.7
2 5 416
0L 0, 7 Ty
33 1.2
001l g T 77

This gives x, = 3, x, = g, and x, = 2. The inverse of A is given by the right-hand-side
matrix, which is the same as obtained by the method of adjoint matrix.

Partitioned matrix method. Let the two nonsingular matrices A and B of
size n be partitioned as shown subsequently, given that A;, is nonsingular.

Ay, Ap B, ‘ B,
X X
A=|xp) x| 4 p-= (» X p) g) q)
A21 A22 BZl ’ 22
(@%xp)|(gaxq) (@xp) | (gaxq)

If B is the inverse of A, then from AB = I, we have
A B, + ApBy, =1,
A B, + BprA, =0
Also, from BA = 1, we get
By Ay + BpAgy =0
ByA, + BpAy =1,



;
i
;
1
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Because A, is nonsingular, that is, |A ;| # 0, solving for B,;, B,,, B,;, and B,,, we get
B, = Ay + (A'AL)D A, ALY
B, = —-(Aj'A;)D™!
B, = —D7MA, AT
B, =D"!

where

D = Ay, — Au(AA))
To illustrate the use of these formulas, partition the matrix

112 3
A=1|23 2

313 4
such that

2 3
Ap=(1), Ap=(2,3), Ay = |:3:|’ and A, = |: 2:'

In this case, A} = 1 and

3 2 2 1 -4
D‘[s 4] - H(l)(z"”: [—3 —5]

‘ 5 4
D-! = _1 -5 4 _ 7 7
71 3 -1 _§ 1
7 7
Thus,

i "1 5
B11 — ___] and B12 _"'_ ;}
2 R
17 7 7
B21 = § and B22 = 3 1
| 7 7 7

which directly give B = A’
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A.3 QUADRATIC FORMS

Given
X = (X, X oer X)) T
and
a,  an Ay
A = a1 5’:22 Ao
anl an2 ann

the function

O(X) = XTAX = >, > a,x,x;
=1 j=1
is called a quadratic form. The matrix A can always be assumed symmetric because
each element of every pair of coefficients a; and a;; (i # ) can be replaced by LZ“)
without changing the value of Q(X). This assumption has advantages and hence is
taken as a requirement.

To illustrate, the quadratic form

1 0 1]||x
OX) = (x,x,%3) [2 7 6| x,
3 0 2]0x
is the same as
1 1 2||x
OX) = (x, x5, x3) | 1 311 x
2 3 24ixs

Note that A is symmetric in the second case.
The quadratic form is said to be

1. Positive definite it Q(X) > 0 for every X # 0.

2. Positive semidefinite if Q(X) = 0 for every X, and there exists X # 0 such
that Q(X) = 0.

3. Negative definite if —Q(X) is positive definite.

4. Negative semidefinite it —Q(X) is positive semidefinite.

5. Indefinite in all other cases.

It can be proved that the necessary and sufficient conditions for the realization
of the preceding cases are
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1. O(X) is positive definite (semidefinite) if the values of the principal minor
determinants of A are positive (nonnegative)." In this case, A is said to be
positive definite (semidefinite).

2. O(X)is negative definite if the value of kth principal minor determinants
of A has the sign of (—1)*,k = 1,2, ..., n.In this case, A is called negative-
definite.

3. Q(X)is a negative-semidefinite if the kth principal minor determinant of A
is either zero or has the sign of (-1)X,k = 1,2, ...,n.

A.4 CONVEX AND CONCAVE FUNCTIONS

A function f(X) is said to be strictly convex if, for any two distinct points X, and X,,
X+ (1= )Xy) < Af(X) + (1 = 2)f(X)
where 0 < A < 1. Conversely, a function f(X) is strictly concave if —f(X) is strictly
convex.
A special case of the convex (concave) function is the quadratic form (see Sec-
tion A.3)
f(X) = CX + XTAX

where C is a constant vector and A is a symmetric matrix. It can be proved that f{X)

is strictly convex if A is positive definite and f(X) is strictly concave if A is negative
definite.
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PROBLEMS

B A-1. Show that the following vectors are linearly dependent.

1 -2 1
(@ | -2 4 -2
3 -2 -1

"The kth principal minor determinant of A,,.,, is defined by

a4 Ak
a a a
a e *, k=12..n
A Ay Ay

Y
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m A-3.
B A4

B A-S.

B A-6.
H A-7.

A9
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2 4
-3 -6
) 4 8
5 10
Given
1 4 9 7 —1 2
A=|2 5 -8 and B=|9 4 8
37 2 3 6 10
find
(a) A+ 7B
(b) 2A — 3B

© (A +7B)
In Problem A-2,show that AB # BA
Given the partitioned matrices

157 2 3 -4 5

A=2_69 and B=|1 2 6 7
37 2 31 0 9
4 9 1

find AB using partitioning.

In Problem A-2, find A~! and B™" using the following:

(a) Adjoint matrix method

(b) Row operations method

(¢) Partitioned matrix method - N .
Verify the formulas given in Section A.2.7 for obtaining the inverse of a partitioned matrix.

8

where B is a nonsingular matrix.

Find the inverse of

. Show that the quadratic form

2
O(xy,x,) = 6x; + 3x, — 4xix, — 2 — 3%~ 4

is negative definite.
Show that the quadratic form
O, %5, %3) = 2x] + 25 + 333 + 20X, 2x,%3

is positive definite.
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B A-10. Show that the function f(x) = ¢* is strictly convex over all real values of x
W A-11. Show that the quadratic function .
f(x1, %5, x3) = 5xF + 562 + 4x3 + dxx, + 2x,x,
is strictly convex.
W A-12. In Problem A-11, show that — (X1, X2, %3) is strictly concave.

Appendix B

Introduction to Simnet Il

B.1 MODELING FRAMEWORK

The design of SIMNET II views discrete simulation models as queueing systems.
The language is based on a network approach that uses three suggestive nodes: a
source from which transactions (customers) arrive, a queue where waiting may
occur, and a facility where service is performed. A fourth node, auxiliary, is added to
enhance the capabilities of the language.

Nodes in SIMNET Il are connected by branches. As transactions (also called en-
tities) traverse the branches, they perform important functions that include (1) con-
trolling transaction flow anywhere in the network, (2) collecting pertinent statistics,
and (3) performing arithmetic calculations.

During the simulation execution, SIMNET II keeps track of the transactions
by placing them in files. A file can be thought of as a two-dimensional array in which
each row stores information about a single transaction. The columns of the array
represent the attributes that allow the modeler to keep track of the unique charac-
teristics of each transaction.

SIMNET II uses three types of files.

1. Event calendar
2. Queue
3. Facility

*This appendix provides the basic features of SIMNET 1L Space limitation does not allow the
presentation of the intermediate and advanced features of the language. A complete documentation of
SIMNET II is given in Hamdy A. Taha, Simulation with SIMNET 11, second edition, SimTec, Inc., Fayet-
teville, AR, 1995
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