
11 
Generiα;ti on 
Algorithms 

Column 
/ 

INTRODUCTION 

One of the recurring ideas in optimization and in this text is that of decom­
position. We have sever때 times considered what happens when the integer 
programming problem (IP) max{ ex: x e X} has a feasible region X that can 
be written as the intersection of two or more sets with structure X = n뜸。Xk 
for some K 즈 1. Even more particular is the C앓e where the constraints take 
the form: 
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so that the s하S Xk = {xk E 앙k : Dkxk :5 dk} are independent for k = 
1, ... , K, and only the joint constraints 'EZ느1 Akxk = b link together the 
different sets of variables. 

Given an objective function maxε갚1 얀싼, two earlier ap~roaches that 
would permit us to benefit from such structure are cut generation, in which 
we would try to generate valid inequalities for each subset Xk, k = 1, ... , K, 
and Lagrangian relaxation, in which we would dualize the j。int constraints so 
as to obtain a dual problem: 
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n짚nL(u), 



where 
K 

L(u) = m값{ε(얀 - uAk)xk + ub: xk E Xk for k = 1, ... , K}, 

and the calculation of L(u) breaks up into K distinct subproblems: 

K 

L(u) = ε max{(얀 - uAk)xk: xk E Xk} + ub. 
k=l 

In this chapter we examine a third way to exploit the structure of integer 
programs of the above form. Throughout we assume that each of the sets Xk 
is bounded for k = 1, ... , K. The approach essentially involves solving 뻐 
equivalent problem of the form: 

K K 
m앓{ε --l>..k: ε Bk>.k = β, >.k 즈 0 integer fork= 1,. 

k=l k=l 

where each matrix Bk has a very large number of columns, one for each of the 
feasible points in Xk, and each vector 샤 contains the corresp。nding variabl않. 

For example, we now derive an alternative formulation of this type for the 
uncapacitated facility location problem U FL. Here the locations j = 1, ... , n 
correspond to the indices k = 1, ... , K. For each nonempty subset S ~ M of 
clients, let 새 = 1 if depot j satisfies the demand of client set S. Th업 then 
leads to the formulati。n:

min εjEN ε8¢φ(εiES Cij + /j)λ£ 
εjEN εS¢t/>,iES 션= 1 for i EM 

Es¢φ서 $1 forjEN 

객 E {0, l}for </> ;l S 드 M,jEN. 
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(11.3) 

(11.4) 

Here the cost of 셔 is the cost of opening depot j and serving the clients 
in S from depot j. The first constraints again impose that each client is 
seπed, while the second set of constraints ensure that at most one subset of 
clients is 잃signed to depot j. In practice the latter constraints are typically 
unnecessary. Why? 

Thus the problems we wish to solve here are integer pr。grams with an 
enormous number of variables, where the columns are often described impli­
citly as the incidence vectors of certain subsets of a set, that is tours, client 
subsets, and so on. Below we show how such (large) formulations of an in­
teger progr없n, called Master Problems, also arise by reformulation. We then 
consider how t。 solve the linear programming relaxation of these Master Prob­
lems, and relate the strength of this relaxation to that obtained by Lagr뻐gian 
duality, or by the use of cutting planes. Finally we consider what to do when 
the linear programming solution is not integral, and we must resort to enu­
meration, leading to IP Column Generation or Branch-and-Price algorithms. 

11.2 DANTZIG-WOLFE REFORMULATION OF AN IP 

Consider the problem in the form: 

K K 
(IP) z = m앓{ε얀xk: εAkxk = b,xk E Xk fork= 1, ... ,K} (11.5) 

k=l k=l 

where Xk = {상 E Z암 : Dkxk $ dk} fork= 1, ... , K. Assuming that each 
잃t Xk contains a large but finite set of points {xk,t}표1, we have that Xk = 
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Now substituting for 싼 leads to 없1 equivalent IP Master Problem: 

(/PM) 

z=max.E뜯l ε깥i(얀xk,t)사,t 

ε뜯1 ε깥i (Akxk,t)사,t =b 

ε깥1 >..k,t = 1 fork= 1, .. . ,K 

사,t E {O, l} fort= 1, ... , 자 and k = l, ... ,K. 

Continuing with problem U FL, suppose we start from the weak formulation 

min.EieM εjEN 다:jXij + εjEN 좌Y1 
ε}EN Xij = 1 for i E M 

εieMXi; $ myj for j EN 
x E BIMlxlNI ,ν eBINI. 

(11.6) 

(11.7) 

(11.8) 

(11.9) 

Here we can take (11.7) as the joint constraints, and Xk = {(X1k, ... ,Xmk,νk): 
εiEMXik $ mν'k, Xik E B1 for i E M, Yk E {0, l}}. The points in x1c are 
{(책, l)}sζM, where z홍 is the incidence vector of S ~ M, and (0, 0) with 
잃sociated -variables 책,vk respectively leading to the IP Master Problem: 

min.EjeN[ε8¢φ(εiES 다j + fj)>.~ + f;>.~] 
εjEN ε8¥-φ,iES 샤 = 1 for i EM 

ε8¢φ잭+새+ 111 = 1 for j E N 

션 E {O, 1} for S 드 M,j EN, 111 E {O, l} for j EN. 

Observe that as 좌 즈 0, variable >.~ 월 dominated by v1 and can be dropped. 
Now th업 formulation and (11.1)-(11씨 are identical if we take v1 to be the 
slack variable in (11.3). 



11.3 SOLVING THE MASTER 니NEAR PROGRAM 

Here we use a column generation algorithm to s。lve the linear programming 
laxation of the Integer Programming Master Problem, called the Linear 

Programming Master Problem: 

(LPM) 

zLPM =maxE뜸l ε깥i<얀xk,t)Ak,t 

εf=l ε깥1(Akxk,t)Ak,t = b 

ε잖l Ak,t = 1 for k = 1, ... , K 

Ak,t 즈 0 fort=l, ... ,Tk,k=l, ... ,K 

I d'x 、
where there is a column ( Akx J for each x e Xk Below we will U잃 {따}뜸1 

、 ek I 
as the dual variables associated ~ith the joint constraints, 없id {µk}갚 1 as dual 
variables for the second set of constr외nts, known as ∞πvexitν co떠t~~따nts. 

The idea is to solve the linear pr명ram by the primal simplex algorithm. 
However, the pricing step of choosing a column to enter the basis must be 
modifi어 because of the enor1 is nu 
the columns one by one, the problem of fin띠ng a column with the largest 
reduced price is itself a set of K optimization problems. 

Initialization. We suppose that a su빼et of columns (at least one for each k) is 
available, providing a feasible Restricted Linear Prog'ramming Maste애rob싫 

(RLPM) 
εLPM =max갔 

AA=b 
A>O 

where b = ( : ) , 심 generat어 by the a뼈lable set of C이umns and 없 
submatrix ot ’ 

A A 낀 A A 자 :: AK K AK K자 ) 
1 .. 1 ' 

1 .. 1 I 

1 .. 1 I 

and c, A are the c。nespo_nding costs and variables. Solving RLPM giv1 an 

Primal Feasibiljty. Any feasible solution of RLP M is k썩'?_l~- for L_PM. 
In particular, >.• is a feasible solution of LPM, 없id so εLYM = c)..* = 
ε江1 πibi + ε뜸1 µk $ zLPM. 

Optimality Check for LP M. We need to check whether (π, μ) 입 dual feasible 
for LPM. This involves checking for each column, that is for each k, and 
for each x E Xk whether the reduced price d'x - πA kx - µk ~ 0. Rather 
than examinin~ each point separately, we treat all points in Xk implicitly by 
solving an optimization subproblem: 

(k = max{(d' - πAk)x - µk : x E Xk}. 

Stoppiπg Criterion. If (k = 0 for k = 1, ... , K, the solution (π, µ) is dual 
feasible for LPM, and so zLPM ~ ε江l 따bi+ ε갚1 µk. As the value of the 
primal feasible solution >.. equals that of this upper bound, >.. 월 optimal for 
LPM. 

Generating a New Column. If (k > 0 for some k, the column corresponding to 
the optimal solution 찬 of the subproblem has positive reduced price. Intro-

I d'찬 、
ducing the column I A k찬 I leads to a new Restric않d Line앓 Pro망없nming 

、 ek I 
Master Problem that can be easily reoptimized (e.g., by the primal simplex 
algorithm). 

A Dual (Upper) Bound. From the subproblem, we have that 와 즈 (d' -
πAk)x - µk for all x E Xk. It follows that (d' - πAk)x - µk - (k ~ 0 “r all 
x E Xk. Therefore setting ( = ((i. ... , (K), we have that (π, µ + () is dual 
feasible in LPM. Therefore 

K K 
zLPM ~ πb+ εµk+ εμ. 

Th않e different 。bservations lead directly to 뻐 algorithm for LP M that 
terminates when (k = 0 fork= i, ... , K. However, as in Lagrangian relaxa­
tion, it may be possible to terminate earlier. 

An Alternative Stoppiπg Criterion. If the subproblem solutions (x1, ... , xK) 
sat펴 the origin외 joint constraints E뜯i Ak상 = b, then (x1, ... , xK) is 
optimal. 
Th농 follows because (k = ( d' - πAk)찬 - µk implies that εk d'찬 = 

εk πAk찬 + εk µk + εk (k = πb + εk µk + εk (k· Theref~r_e_ the primal 
feasible solution has the same value as the upper bound on z"" M 
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We initialize with a restricted LP M havin~ 7 columns, corresponding to a 
tour of len방h 28 and six 1-trees chosen arbitrarily 

STSP by Column Generation 11.3.1 

Here we consider the application of the above algorithm to solve the Master 
Linear Program of a problem in which there is just a single subproble~~ 
W~ag획n consider the 핸mmetric traveling sal않man problem, which can be 
written as n
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+28.X1 
+2.X1 
+3.X1 
+1A1 
+1.X1 
+3.X1 

+18.X5 
+2.X5 
+2.X5 
+3.X5 
+1A6 
+2,\5 

+2lA3 
+2,\3 
+2,\3 
+2,\3 
+3,\3 
+l,\3 

,\ 

+25>.2 
+2>.2 
+2>.2 
+3>.2 
+2>.2 
+1>.2 

28>.1 
2>.1 
2>.1 
2>.1 
2,\1 
2>.1 

mm 

ε Xe = 2 for i E N, x E X1} 
eE6(i) 

min{ε CeXe: 
eEE 

--where 
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x1 = {x e z~: εeE6(1) Xe= 2,εeEE(S) Xe :51 SI -1 for <PCS C N \{I}, 

is the set of incidence vect。rs of 1-trees. 
Writing Xe= εt:~.s.E' At, where (;t = (N,Et) is the tth 1-tree, the degree 

constraints become εeε6(i) Xe = εeE6(i) εt:eeEc At = εt d센t = 2 where 
쩍 핍 the degree of node i 띠 the I-tree (;t. Thus the corresponding Linear 
Pr,。gr없nming Master is 

εeEEXe = n} 

The optimal 1-tree is X14 = X1s = x24 = x2s = X35 = 1 with ( = -똥. 
Therefore 22.5 + ( = 16.75 :5 zLP :5 22.5. 

We start a new iteration by introducing this 1-tree as a new column in 
the r잃tricted master with cost 22, and degrees (2,2,1,2,3). The new line않 
programming solution is ,\ = (0, 0, 울,0,0, 융,0, ! ) with cost 20.333 and dual 
solution u = (65 1 5 2 ) 

‘웅, 3• -3, 3• I 
The corresponding reduced cost matrix for the subproblem is 

( 앓 갱 
'I ~· 쫓 ) -융 그훈 기? 꿇 

The optimal 1-tree 썰 X13 = X14 = X23 = X24 = X35 = 1 with ( = -뜸. The 
lower bound of 20.333 - 월 = 15.!3~7 농 not 잃 good 잃 that obtained-before. 
Therefore we now have 16.75 < z"r < 20.333. 

Again we introduce this 1-tree as a new column in the restricted master with 
cost 14, and degrees (2,2,3,2,1). The new linear programming solution is,\= 
(0, 0, 0, 0, 0, 0, 0, 융, .~) with cost 18 and dual solution u = {13, 0, -4, 0, 이. 

N 
t 
e 

A 
--

hl 

T 

1 

@k 

=T+ 

젠
 각
 싸
‘
샤
M
 

「
〕
‘
사m셔
K
A
 

υ
m‘
쩍
 
E 

I 

η
섭
 

ε
 

with which we associate dual variables {ui}갚=l to the degree constraints, 
and dual variable µ to the convexity constraint~ The corresponding single. 
subproblem 농 

+19,\4 +22,\5 
+2>.4 +2,\5 
+lA4 +L\s 
+3,\4 +2,\5 
+3,\4 +3,\5 
+L\4 +2,\5 

> 0. 

The resulting linear programm 
22.5 and dual solution u = (펼, -1, -광, -홍, 이. The corresponding reduced 
cost matrix for the subproblem 월 

(LPM) 

(1 = 띠n{ε(ce - Ui - Uj)Xe - µ:XE X1} 
eεE 

a걷 the 1-tree at has reduced cost ext -εiEN 쩍Ui-µ =ext -ε‘EN Ui Eee6(i) 
x~-µ= εeEE{Ce -Ui -uj)감 - µ, where x~ for e E E are the edge variabl않 
of the 1-tree (;t, and e = (i,j) fore E E. 

Note that because we are dealing with 1-tr,않s, 댐 = 2 for 외l t, and so the 
first equation in LPM 월 twice the convexity const~aint. As a result we can 
drop the convexity constraint. 

Example 11.1 Consider an instance of STSP with distance matrix 
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If whe~ the _column_ generation alg。rithm terminates, the optimal solution 
vector>.= (서, ... ,XK) of LPM 업 not integer, then IP M 흡 not yet solved. 
However, zLPM 즈 z, whichsu잃ests the ~ossibility of using such upper bounds 
in a hr뻐ch-and-bound algorithm. In this section we pr않ent an algorithm for 
0-1 problems using this bound, called an IP column generation or branch­
and-price algorithm. 

Again we have the original problem 

IP COLUMN GENERATION FOR 0-1 IP U.4 

z = ma.x{ε뜸1 <Jcxk: ε~i A1cx1c = b, 

Dkxk :5 die for k = 1, ... , K, xk E Bnk fork= 1, ... , K}, 
(IP) 

z = ma.xε뜸1 ε[!1(얀xk,t)사,t 

ε~=1 ε딸i (Akxk,t)>.1c,t = b 

ε깥1 >.1c,t = 1 for k = 1, ... , K 

사,t E {O, 1} for t = 1, ... , 파, k=l, ... ,K. 

and its reformulation 

(IPM) 

whose linear programming relaxation has optimal solution >.. 
뀔eca.use the points xk,t E Xie are distinct 0-1 vectors, note that 찬 = 

E잖l X1c,txk,t E {O, l}nk if and only 표 x 흡 integer. Therefore 표 X is not 
integer, there is some κ 없id j such 
linear programming 얘lue £짜 that 

This sugg않ts the branching scheme shown in Figure 11.l(a.), in which 
the set S of all feasible solutions 월 split into 80 = Sn {x : 착 = O} 없id 
Si =Sn{x: 감 = l}. Note that th뀔 홉 exactly the S없ne type of scheme used 
in the basic branch-and-bound algorithm in Chapter 7. 

The optimal 1-tree is X14 = x15 = x23 = x24 = x35 = 1 with ( = -1. The 
lower bound on zLP M incre월es to 18 - 1 = 17. As this 1-tree 홉 a tour, i; 
follows from the alternative stopping criterion that it is optimal. Alternatively 
ne can check that its real cost is 17. • 

Strength of the Linear Programming Master 

How strong is the linear pr。gramming relaxation of the Master Problem? Is 
there some hope that it will solve the original problem IP? 

11.3.2 

Proposition 11.1 

K K 

zLPM = m앓{활Xie; 앓Akxk = b, xk E conv(Xk) for k = 1,. . , K}. 

Proo[. LPN,_ c~ be obta!ned from the ori밍뼈 problem IP by substitut­
ing 상 = εζ1 xk,t사,t,εt후1 사,t = 1,사,t 즈 0 fort = 1, ... ,깐. This 월 
equivalent to substituting xk e conv(X1c). • 

As discussed in the introduction to this chapter, when IP is decomposable 
Lagrangian relaxation and cutting plane algorithms are two possible a.lternat: 
ive approaches. Specific떠ly let ψLD be the value of the Lagrangi때 dual when 
the joint constraints εf=t Akxk = b a.re dua.lized, and let zCUT be the value 
obtained_ when cutting planes are added to the linear programming relaxation 
of IP usmg an 앉act separation algorithm for each of the sets conv(Xk) for 
k= l, ... ,K. 

The next result, showing that 떠l three approaches a.re in some sense eoui­
va.lent 앓 they lead to the same du혀 bounds, 법 b잃ed on Theorem 10.3. Pro­
position 11.1, and the fact that an exact separation algorithm for con~(Xlc) 
implicitly generates conv(Xk). 
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Branching for 0-1 column generati。n: (a) original (b) column variables 

It is important now to make sure that it will still be possible to solve the new 
linear programming master problems without difficulty. To do this we need 

Fig. ll.l 

As the subproblems solved in both the column generation and Lagran1친an 
dual approaches are optimization problems over Xk, column generation can 
be viewed as an algorithm for solving the Lagrangian dual in which the dual 
variables π are updated using linear progr없nming by solving the Restricted 
Linear Programming Master. This is in comparison with the subgra.dient 
algorithm often 뻐ed to solve the Lagran밍an dual that is based on a much 
simpler updating procedure. 

On the other h없id, if we use the cutting plane appro앓h, though the bound 
obt허ned 농 potentially the same, separati。n problems over conv(Xk) have to 
be solved instead of optimization problems. 

As the t~eoretical con 
for conv(X") is the same, the choice of approach depends on the relative 
difficulty in solving the two problems as well as on the convergence of the 
column generation and cutting plane a.lg。dthms in practice. 

Theorem 11.2 zLPM = WLD = zCUT. 
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to define the new MaBter Problems aBsocia.ted with Si for i = 0, 1, a.nd the 
new subproblems. 

Now 잃 xJ. = ε잖1 Ak,t작,t E {O, 1}, 갤 = 6 E {O, 1} implies th하 x~·t = 6 
for a.ll k, t with 사,t > 0. So the MaBter Problem at node Si = Sn{x: xj = i} 
for i = 0, 1 is 

(IPM(Si)) 

z(Si) = ma.xεk;f:K. εt(ckxk,t)사,t + εt:x~··=i(c"xκ,t)Att,t 
εk;I:κ εe(Akxk,t)사,t + εt::i:;’‘=i(Aκ상,t)샤,t =b 

LtAk,t = 1 fork 츄 κ 
Et꽉’‘=i Aκ,t =1 

사,t E {O, 1} fort= 1, ... , 짜, k=l, ... ,K. 

T비s hBB the same form 앓 the original Master Problem except that a set of 
columns a.re excluded on ea.ch branch, a.nd the previous LP M solution is now 
infeasible. Turning to the column generation subproblems, the subproblem is 
unchanged if k =F κ. However, for subproblem κ and i = 0, 1, we have 

싸(Si) = max{(c" - πA‘)x - μκ :xe Xκ, Xj = i}, 

which is very similar to the original subproblem. 
Another idea is to branch on some fra.ctiom괴 사,t va.ria.ble, fixing it to 0 뻐d 

1 respectively, see Figure 11.l(b). Note, however, that on the br없ich in which 
샤,t = 0, just one column, corresponding to the tth solution of subproblem k, 
is excluded, so the resulting problem is almost identical t。 the original one. 
This means that the resulting enumeration tree hBB the undesirable property 
of being highly unbalanced. In addition it is often difficult to impose the 
condition 사,t = 0, a.nd thus to prevent the same solution being generated 
again 88 optima.I solution after branching. 

One potential advantage of the column generation approach, visible in Ex[

ample 11.2, is that the optima.I solutions to RLPM are often integral or close 
to integral. In the first case this gives a feasible integer solution, and in the 
second such a solution can often be obtained by a simple rounding heuristic. 

11.5 IMP니CIT PARTITIONING/PACKING PROBLEMS 

An important subcl월S of decomposable 0-1 /Ps are pa.eking and partitioning 
problems. Given a finite set M = {1, ... , m}, there a.re K implicitly described 
sets of feasible subsets, a.nd the problem is to find a maximum value packing 
or partition of M consisting of certain of these subsets. 

In terms of the original IP (11.5} of Section 11.2, we set xk = (yk, ψk) with 
yk E {O, l}m the incidence vector of subset k of M, ck= (ek, Jk), Ak = (1,0) 
and b = 1. One should think of the variabI않 ψk 88 auxiliary variables needed 
to define whether the subset with incidence vector yk is feBBible, and to define 

the possibly nonlinear objective value of the corresponding subset. So we have 
the formulation 

K K 
z=m앓{ε(ekyk + fkψk) : εyk $ 1, (yk ,ψk) E Xk fork= 1, … ,K}. 

k=l k=l 

Now if (νk,t, wk,t) corresponds to the tth feasible solution in the set Xk, and 
사,t is the corresponding variable, we obtain an equivalent Integer Program­
ming Master 

z=maxL:f=1 ε갚1 상yk,t + Jkwk,t)λk,t 

ε씀i Et:파,e=1 Ak,t = I for i E M 

S갚1 사,t :$ 1 for k = I, ... , K 
Ak,t E {0,1} fort= 1, ... ,자,k =1, ... ,K. 

We now present several problems of this type. Clearly as the partitioning 
problem 뀔 a special caBe of (11.5), the algorithm of the previous section can 
be applied. 

Multi-Item Lot-Sizing. Suppose we are 밍ven demands d~ for items k = 
1. .... K over a time horizon t = 1, ... , T. All items must be produced on 
a single machine; the ma.chine ca.n produce only one item in ea.ch period and 
has a capacity Cf if item k is produced in period t. Given production, storage, 
and set-up costs for each item in each period, we wish to find a minimum cost 
pr。duction plan. This problem ca.n be formulated as 

min 않=1 당=1닮xf +hf sf+ f짧} 
ε뜯1νt :$ 1 fort= 1, ... , n 

(xk,sk , 쌀) e Xk fork= 1, .. . ,K 

where Xk = {(xk, sk , 하) E Rf. x R뚱 x Bn : sf-1 + x: = df +sf, xf $ 
Cfνf f。r t = 1, ... ,π}. 

c」딴짝므9: Given a graph G = (V, E), edge costs Ce for e E E, node weights 
di for i EV, 없id a cluster capacity C, we wish to split the node set V into 
K (possibly empty) clusters satisfying the prope.πy that the sum of the node 
wei뱉ts in each cluster does not exceed C, in a way that minimizes the sum of 
the weights of edges between clusters (maximizes the sum of weights of edges 
within clusters). Figure 11.2 shows a feasible solution for an instance with 3 
clusters and a ~apacity of 9. The thick edges are those between clusters. The 
problem can be formulated 88 

max εf=l εeεE CeW: 

ε뜸1 yf $ 1 for i E V 
(wk , 팔) E Xk fork= 1, ... ,K 



where Xk = {(ψk, 상) ε Bm X Bn: ψt :5 Yf,ψt :5 양,ψt 즈 νf + 앞 -1 for 
e .= (i,j} E E, Eiεv di않 :5 C} with yf = 1 if node i is in clus냥r k and 
ψS = 1 if edge e has both endpoints in cluster k. 

K=3,C=9 
Node weights shown 

Fig. 11.2 Clustering solution with three clusters 

Capacitated Vehicle Ro딴띤.g. Given a graph G = (V, E), a depot n。de O‘ edl!:e 
costs Ce for each e EE, K identical vehicles 。f capacity C, and client 야d하s 'd: 
for i EV\ {O}, we w월h to find a set of subtours (cycles) for each vehicle 해ch 
that (i) each subtour cont허ns the depot, {ii) together the subtours contain all 
the nodes, {iii) the subtours are d농1joint on the n。de set V \ {O}, and {iv) the 
total demand on each subtour (the total amount delivered by each vehicle) 
does not exceed C. 

Another problem with such a decomposable structure is the generalized 
잃s~ent problem. An instance of GAP is treated by br뻐ch-and-cut in 
Section 9.6. 

11.6 PARTITIONING WITH IDENTICAL SUBSETS* 

The clustering and vehicle routing problems of the last section both have the 
property that the clusters or vehicles are interchangeable (independent of k). 
This means that the numbering of the subsets is arbitrary, and exchanging 
any two sets leads to an 않sentially identical solution. 

Here we consider how the integer programming column generation al­
gorit~~ of Section 11.4 can be specialized to take account of this symmetry. 
As Xk = X, (ek,Jk) = (e,J) and 파 =Tfor 때l k, we can set At = ε{;=1 Ak,t 
and IP M now takes the form: 

maxE'[=1(eyt + fwt)At 

Lt:u!=l >.t = 1 for i E M 

E[=1λt 드 K 
AEBT. 

There is now just a single column generation subproblem. Letting the dual 
variabl잃 associated with the linear programming relaxation be { 7ri heM and 
µ, the subproblem is: 

( = max{(e - π)y + jw-µ: (ν, ψ) eX} 

andLPM C없l be solved as in Se얀ion 11.3. 
What happens if the solution A of LPM is not integral? It is now not at 

all obvious how to recover the original variables 상 or the 사,t variables, so 
the branching scheme proposed in Section 11.4 must be modified. We now 
consider two possibilities. 

Branching Rules 

(i) If E'{'=1 At = a 졸 Z, then form two br따tches with ε'{'=1 At :5 LaJ and 
Ei'=1At 즈 ral r않pectively. 

(ii) A second possibility is based on the simple observation that if we take 
two elements of M, either they appear together in some subset, or not. So we 
choose a pair of elements (rows) i and j in M for which 

0< ε At< 1, 
t:11!=판=1 

and we then form two branches with εt:피=피=l At= 1 and εt:파=갱=l At= 0 
respectively. 

In the first C잃e {i) we impose that i 와id j lie in the same sub앞, and in 
the second C잃e {ii) that they lie in different subsets. In C잃e {i) all columns 
corresponding to subsets Q containing either i or j but not both are elimin­
ated from the Master Problem, and the constraint Yi = νi is added to the 
subproblem to ensure that any new column generated does n。t generate a 
subset containing i but not j, or vice versa. In case (ii) columns containing 
both i and j are eliminated from the Master, and the constraint Yi+ Y; :5 1 
is added to the subproblem. 

So, imposing the constraints Yi = Y; or Yi + Y; :5 1 on each subproblem 
permits us to branch as shown in Figure 11.3. 

The following result says that this second br없iching scheme is sufficient. 

Proposition 11.3 If X 룸 BT, there exist mψs i,j EM such that 

0< ε At< 1. 



giving ( = 1 and an optimal solution ψ12 =Yi= ν2 = 1. 

3. Solution of LP M. After three iterations LP M is s。lved in the form 

1 

1 

1 

3 

--
--

<

maxO시 + 0>.2 + 0>.3 + 1사 + 1>.s + l>.6 
1>.1 + 0>.2 + 0>.3 + l>.4 + 1>.s + 0,\6 

0,\1 + 1A2 + 0>.3 + l>.4 + O>.s + 1,\6 

0,\1 + 0>.2 + l>.3 + 0>.4 + 1.Xs + 1,\6 

1>.1 + l>.2 + l.X3 + l>.4 + lAs + 1,\6 
A 으 0 A branching scheme for partitioning Fig. 11.3 

4. Braπching. Taking rows i = 1 and l = 2, we use the second branching 
cheme and split the problem into two subproblems: 

s, is the set of solutions in which nodes 1 and 2 do not lie in the same 
cl뻐;er, so 하 씹 obt떠ned by setting A4 = 0 C따ting off the 앉isting s빠ion. 
All ne~ cl빠ers containing both nod엉 1 and 2 are exclud어. 

52 is the set of solutions in which any cluster containing either 1 or 2 must 
‘o t외n the other, so S2 is obtained by setting >.2 = A3 = >.s = A6 = 0 cutting 
~ff the existing solution. Any new ch빠ers containing just one of the nodes 

1,2 are excluded. 

with optimal solution ,\4 = >.s = A6 = ! and zLP M = ~ · 
Such a pair is also not difficult to find. 

Example 11.2 Consider an instance of the clustering problem of Section 11.5 
with G = (V, E) the complete graph on 3 nodes, K = 3 clusters, the objective 
of choosing as many edges as possible within the clusters, and at most 2 nodes 
allowed per cluster, that is, node wei~hts di = 1 for all i E V, edge weights 
Ce= 1 for 때l e EE, and cluster capacity C = 2. 

1. Solving LP M. Starting the Restricted LP M with clusters consisting of 
single nodes leads to 

1 

1 

1 

5. Reoptimizing for 81. With ,\4 = 0, the new RLP M is 

--

--

maxO시 + 0>.2 + 0>.3 + 1>.s + 1Aa 

l,\1 + 0>.2 + 0>.3 + lAs + O>.a 

0>.1 + 1A2 + 0,\3 + O>.s + l.X5 

0>.1 + 0>.2 + l.X3 + Us + 1.Xa 

l>.1 + l>.2 + 1,\3 + 1.>.s + 1>.a 
>. > 0 

3 <

with optimal primal solution >.1 =>.a= 1, and dual solution π = (0,0, 1),µ = 
O. The incumbent is updated, ζ = 1. 

6. Subproblem for 81. The subproblem is 

(=minψ12 + ψ13+ ψ23 - ly1 - Oy2 - Oy3 - 0 

ψ12 ~Yi,ψ12 ~ ν2,ψ12 즈 Yi +Y2 -1 

ψ13 ~Yi,ψ13 ~· ν3,ψ13 즈 νl + ν3 -1 

ψ23 으 ν2,W23 ~ Y3,ψ23 즈 Y2+Y3-l 

Yi+ ν2 + Y3::; 2 

ν1+Y2~1 
ψ E BIEl,y E BIVI 
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1 

1 

3 

1 
-

--
<

max0>.1+0>.2 + 0>.3 

l>.1 + 0,\2 + 0,\3 

0>.1 + 1>.2 + 0>.3 

0>.1 + 0>.2 + l>.3 

l>.1 + l>.2 + l>.3 

A 즈 O 

with RLPM value 0, primal solution ,\ = (1, 1, 1), and dual solution π = 
(0, 0, 0), µ = 0. This provides a feasible solution to the original problem of 
objective value 0, and so we set 죠 =0. 

2. Solving the Subproblem. The subproblem of selecting a feasible cluster of 
maximum reduced price is • 

( = minw12 +ψ13 +ψ23-0y1-0Y2-0y3-0 

W12 ::; ν1,W12 ~ Y2, ψ12 즈 νI +y2-l 

ψ13 ~Yi,ψ13 $ ν3,ψ13 즈 ν1 +y3-l 

ψ23 $ ν2, ψ23 $ y3, ψ23 즈 Y2+y3-l 

ν1 +Y2 +ν3$2 
w E BIEl,y E BIVI 



EXERCISES 11.8 giving ( = 0. So LPM(S1) 농 solved with zLP M (Si) = 1. The node is pruned 
by bound. 

1. Consider the following instance 。f UFL with m = 4,n = 3, 

I 2 1 5 、
I 3 4 2 I 

(허) =I 6 4 1 I 
\ 1 3 7 I 

Reformulate using an Integer Programming Master Problem. Solve the Linear 
Programming Master by column generation. 

and f = (8, 6, 5). 

7. Node 82. When setting .X2 = Aa = 사 = A5 = 0, the new RLP M has unique 
optimal solution Aa = 사 = 1. We continue iterating between subproblem 뻐d 
the restricted Master till LP M 뻐 solved with zLPM (82) = 1. Then the node 
is pruned by bound, and as there are no outst없iding nodes, the incumbent 
solution A1 = A5 = 1 is optimal. This corresponds to one cluster containing 
node 1, another containing nodes 2,3, 뻐d the third necessarily empty. • 

2. Solve the following instance of STSP by column generation 
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3. Consider GAP with equality constraints 

maxε뜸1 ε7=1 다.jXij 
ε까=l Xii = 1 for i = 1, ... , m 
ε江1 aijXij :::; 야 for j = 1, ... ,π 

XE Bmn. 
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S이ve an instance with m = 3, π = 2, (다:;) = (따:;) = I i 

\ 1 

11.4 The first papers on integer pr명ram min~양 column generation appeared 
in the eighties (DesSouDes84],(DesSou89] on routing problems in which the 
subproblems are constrained shortest path problems that are solved by dy­
nanuc 

NOTES 

11.1 The fundamental paper on the decomposition of linear pro망ams, known 
as Dantzig-Wolfe decomposition, is (DanWol60]. Recent surveys in this area 
include (Barnetal94] and (Desetal95]. 

11.7 

11.3 The first use of column generation to solve the Master linear progr뻐l 

arising from an integer programming problem is probably the work on the cut­
ting stock problem (Gi1Gom61], (Gi1Gom63]. The equivalence of the bounds 
provided by the linear pro맏없nming Master and the Lagrangian dual has been 
known since (Geo74]. 

( ; ) by i따r pro양amming decomposition. Solve also by Lagr와igian relax­

ation- and by cutting planes and compare. 

and clustering problems have been tackled by 
in (Vdbeck94], and the clustering prob­

generalized assignment problem in (Sav93], 없id 
problems in (Vancetal94] 없id (Vdbeck96] re-

4. Formulate the Integer Progr뻐iming Master and subproblems for the three 
problems presented in Section 11.5. 

5.* (Benders’ Reformulation). Use the results of Exercise 1.15 to show that 
11.6 The branching rule (칩) 농 from (Ry짧os81]. Recent more general branch­
ing rules that are not restricted to (서 problems appear in (Barnetal94] and 
(VdbeckWol96]. 

z = max{cx+hν :Ax+Gν $b,xE R뚱,ν EY 드 R~} (MIP) 
In (Ben62] an alternative resource-based reformulation and decomposition 

approach is proposed; see Exercise 11.5. has the equivalent formulation 

z = maxrt 
11:::; u•(b - Gy) + hy for s = 1, ... , S 
상(b-Gy) 즈 0 for t = 1, ... , T 

yE Y. 
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