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Column Generation
Algorithms

11.1 INTRODUCTION

One of the recurring ideas in optimization and in this text is that of decom-
position. We have several times considered what happens when the integer
programming problem (IP) max{cz : £ € X} has a feasible region X that can
be written as the intersection of two or more sets with structure X = N X*
for some K > 1. Even more particular is the case where the constraints take
the form:

Alrl +A%222 4... +AKzK = b
Diz! < d
< .
< .
DX K < dg
ez, ... . 2K ez

so that the sets X*¥ = {z* € Z}* : D¥z* < di} are independent for k =
1,..., K, and only the joint constraints Zf;l Akzk = b link together the
different sets of variables. .

Given an objective function max Z,’;l cFz*, two earlier approaches that
would permit us to benefit from such structure are cut generation, in which
we would try to generate valid inequalities for each subset X*,k =1,...,K,
and Lagrangian relaxation, in which we would dualize the joint constraints so
as to obtain a dual problem:

min L(w),
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where

K
L(u) = ma.x{z(c’“ —uA")a:" +ub:zF e X* for k = 1,...,K},
k=1

and the calculation of L(u) breaks up into K distinct subproblems:

K
L(u) = Zmax{(c" —udk)zk : 2F € X*} 4 ub.
k=1
In this chapter we examine a third way to exploit the structure of integer
programs of the above form. Throughout we assume that each of the sets X*
is bounded for £ = 1,...,K. The approach essentially involves solving an
equivalent problem of the form:

K K
max{z'ykz\" : ZB"A" = 3,AF >0 integer for k = 1,...,K}
k=1 k=1

where each matrix B* has a very large number of columns, one for each of the
feasible points in X*, and each vector A¥ contains the corresponding variables.

For example, we now derive an alternative formulation of this type for the
uncapacitated facility location problem UFL. Here the locations j =1,...,n
correspond to the indices k = 1,..., K. For each nonempty subset S C M of
clients, let A% = 1 if depot j satisfies the demand of client set S. This then
leads to the formulation:

min} e n D gus(Xics CGii + g (11.1)
ZjeN Zs#.ies A, =1 forie M (11.2)

YsepMs<1 forjeN (11.3)
M e{0,1}or ¢ #SC M,j € N. (11.4)

Here the cost of A} is the cost of opening depot j and serving the clients
in' S from depot j. The first constraints again impose that each client is
served, while the second set of constraints ensure that at most one subset of
clients is assigned to depot j. In practice the latter constraints are typically
unnecessary. Why?

Thus the problems we wish to solve here are integer programs with an
enormous number of variables, where the columns are often described impli-
citly as the incidence vectors of certain subsets of a set, that is tours, client
subsets, and so on. Below we show how such (large) formulations of an in-
teger program, called Master Problems, also arise by reformulation. We then
consider how to solve the linear programming relaxation of these Master Prob-
lems, and relate the strength of this relaxation to that obtained by Lagrangian
duality, or by the use of cutting planes. Finally we consider what to do when
the linear programming solution is not integral, and we must resort to enu-
meration, leading to IP Column Generation or Branch-and-Price algorithms.

11.2 DANTZIG-WOLFE REFORMULATION OF AN IP

Consider the problem in the form:

K K
(IP) z=max{) czF:) A*z* =bd* e X* fork=1,...,K} (11.5)
k=1 k=1

where X* = {z¥ € Z}* : DFz* < di} for k=1,..., K. Assuming that each
set X* contains a large but finite set of points {z*!}T¢,, we have that X* =

T T
{zF e R™ : zF = E/\k,t-’ﬂk’t, Z)"‘" =1,M; €{0,1} fort=1,...,Ti}.
t=1 t=1

Now substituting for =¥ leads to an equivalent IP Master Problem:

z= maxz,’;l Z‘.—:l(ckzk't)/\k,t
ZI};I Zﬁl(Akzk't)/\k.t =b
ST Mpe=1 fork=1,....K
Mt €{0,1} fort=1,....,Txandk=1,..., K.

(IPM)

Continuing with problem UFL, suppose we start from the weak formulation

min} e p 3 jen CiiTis + Ljen fii (11.6)

YienTij=1 forie M (11.7)

Yiem Tij Smy; forjeN (11.8)

z € BIMIXINI o ¢ BINI, (11.9)

Here we can take (11.7) as the joint constraints, and X* = {(z1k, . - - » Tmk, Yk)

Yiem Tik < My, Tix € B! fori € M, y € {0,1}}. The points in X* are
{(z%,1)}scm, where z% is the incidence vector of S C M, and (0,0) with
associated variables A%, v* respectively leading to the /P Master Problem:

min zjeN[ZS;éda(ZieS cij + fj)’\?s + fj’\'z)]
Yjen Ssoies s =1 forie M
Zs¢¢A§+z\6+lﬂ' =1 forjeN
M e {0,1} for SCM,je N,vi€{0,1} forjeN.
Observe that as f; > 0, variable /\g is dominated by 7 and can be dropped.

Now this formulation and (11.1)-(11.4) are identical if we take v/ to be the
slack variable in (11.3).



11.3 SOLVING THE MASTER LINEAR PROGRAM

Here we use a column generation algorithm to solve the linear programming

relaxation of the Integer Programming Master Problem, called the Linear
Programming Master Problem:

K oy
zbPM = max 2k=1 ZzL(Ckxk’t)/\k.t

Trc Tik ARkt n, = b

LPM
(LPM) S M =1fork=1,... K
Mg 20 fort=1,..., Tk k=1,... K
&z
where thereis a column [ A*z | for each r € X*. Below we will use {mi}m,
€k

as the dual variables associated with the joint constraints, and {ux}X | as dual
variables for the second set of constraints, known as converity constraints.

The idea is to solve the linear program by the primal simplex algorithm.
However, the pricing step of choosing a column to enter the basis must be
modified because of the enormous number of columns. Rather than pricing
the columns one by one, the problem of finding a column with the largest
reduced price is itself a set of K optimization problems.

Initialization. We suppose that a subset of columns (at least one for each k) is
available, providing a feasible Restricted Linear Programming Master Problem

ZLPM":: mg.xéx
(RLPM) 4.1\ =}
A>0

where b = ( 11’ ), Ais generated by the available set of columns and is a
submatrix of

Alzbt | AlgtT g2,21 0 p2.2m AKgKl | AK, KTk
1 . 1
1 . 1

1 . 1

and & ) are the corresponding costs and variables. Solving RLPM gives an
optimal primal solution A* and an optimal dual solution (m, ) € R™ x RK,

Primal Feasibility. Any feasible solution of RLPM is fea.sgl;lﬁ for {J-I:IW_
In particular, \* is a feasible solution of LPM, and so % =\ =
LTy mabi + 0L, pe < ZEPM.

Optimality Check for LPM. We need to check whether (, 1) is dual feasible
for LPM. This involves checking for each column, that is for each k, and
for each z € X* whether the reduced price Fr — rAkx — e < O.. Rather
than examining each point separately, we treat all points in X* implicitly by
solving an optimization subproblem:

Ce = max{(c* — 7A*)z — py : T € X*}.

Stopping Criterion. If {y = 0for k =1,...,K, }téhe solution (7, ) is dual
feasible for LPM, and so z"PM < 3770, mbi + 3y pk- As the value of the
primal feasible solution X equals that of this upper bound, A is optimal for
LPM.

Generating a New Column. If {; > O for some k, the column corresl?onding to
the optimal solution Z* of the subproblem has positive reduced price. Intro-
ckzk
ducing the column { AFi* | leads to a new Restricted Linear Programming
ek . .
Master Problem that can be easily reoptimized (e.g., by the primal simplex
algorithm).

A Dual (Upper) Bound. From the subproblem, we have that {x > (cF —
wAF)z — p; for all z € X*. It follows that (& — mA¥)x — pp — ¢ < O-for all
z € X*. Therefore setting ¢ = ((,...,{x), we have that (m,p + ¢) is dual
feasible in LPM. Therefore

K K
2LPM < 1p 4 Euk +}:Ck-
k=1 k=1

These different observations lead directly to an algorithm for -LPM that
terminates when {y =0 fork =1,..., K. However, as in Lagrangian relaxa-
tion, it may be possible to terminate earlier.

: = =K
An Alternative Stopping Criterion. If the subproblem solutions 1(:1:1, . ._.}(1: .)
satisfy the original joint constraints E,i{:l Akzk = b, then (£!,...,87) is
optimal. ) o L

This follows because (x = (cF — wAF)Z* — ui implies that 3, c"z. -l
SR mARER £ e+ 3 G = wb+ 3 gk + Dog Gk Theref?,ﬁ the prima
feasible solution has the same value as the upper bound on z .



11.3.1 STSP by Column Generation

Here we consider the application of the above algorithm to solve the Master
Linear Program of a problem in which there is just a single subproblem.
We again consider the symmetric traveling salesman problem, which can be
written as

min{Zceze: Z Te =2 forz'eN,a:eXl}

eEE e€d(i)
where
X'={ze2m: 2ecs(1) Te = 2, ece(s)Te <IS|-1for¢cSc N\ {1},
zeGE Te = n}

is the set of incidence vectors of 1-trees.

Writing e = 37, c g Ae, where G* = (N, EY) is the tth 1-tree, the degree
constraints become 3¢5, Te = Focsy pecme At = Iy dihe = 2 where
d} is the degree of node i in the 1-tree Gt. Thus the corresponding Linear
Programming Master is '

min 221(“t)'\t
(LPM) Yo di=2frieN
Tt de =1
AeRY

with which we associate dual variables {u;}%, to the degree constraints,
and dual variable i to the convexity constraint. The corresponding single
subproblem is

G = min{Z:(ce — Ui —Uj)Te—p:T € Xl}
e€E

as the 1-tree G* has reduced cost ez — Y ;¢ y dtu; — p = ezt — 2 ieN %i Decs(i)
T, — b = T oep(Ce — Ui — u;)zt ~ p, where zt for e € E are the edge variables
of the 1-tree G*, and e = (4, ) for e € E.

Note that because we are dealing with 1-trees, dt = 2 for all ¢, and so the
first equation in LPM is twice the convexity constraint. As a result we can
drop the convexity constraint.

Example 11.1 Consider an instance of ST'SP with distance matrix
7215
3 6 8
Ce = . 4 2
9

DALV IIUNS 05 0l IR/ Vs € Gl N I Tans TN ¥ v e te Seos -——

We initialize with a restricted LPM having 7 columns, corresponding to a
tour of length 28 and six 1-trees chosen arbitrarily

min 28\; 4252 +21h3 +19As +22X5 +18X¢ +28)7
2\ +2X2  +2)3 4+20s  +2X5  +2X¢ +2A7

201 42X 4223+ H1As 4206 +3M7

201 43X 4223 3Ny 42X +3Xe  +1Xg

201 42X +3A3  +3A +3As  +1Xdg  +1)Ag

201 +1h 41Xz +1Ag 425 42X +3Ar

A > 0.

The resulting linear programming solution is A = (0, 0, 31-, 0, i, :}-, %) with cost
22.5 and dual solution u = (3, -1, -4, -2,0). The corresponding reduced

cost matrix for the subproblem is

I | [
SR NN

87 _91 _133 _ 11
8 19 &s 98
s
4 4
: T
; i = = = =1 with ¢ = -2
The optimal 1-tree is 14 = T15 = Tog = Tos = T35 = 1-

Therefore 22.5 + ¢ = 16.75 < zLP < 22.5.

We start a new iteration by introducing this 1-tree as a new column in
the restricted master with cost 22, and degrees (2,2,1,2,3). The new linear
programming solution is A = (0,0, %,0, 0,%,0, %) with cost 20.333 and dual
solution u = %5—’, -;-, —-%, %,O).

The corresponding reduced cost matrix for the subproblem is

_25 _43 _21 _35
s f 52 of
- 3 ﬁ
. 5 5
P
3
The optimal 1-tree is £13 = T14 = T23 = T24 = T35 = 1 with { = _'154'- The

lower bound of 20.333 — -135 = 15.667 is not as good as that obtained before.

Therefore we now have 16.75 < 2L¥ < 20.333. : .
Again we introduce this 1-tree as a new column in the restricted master with

cost 14, and degrees (2,2,3,2,1). The new linear programming solution is A =

(0,0,0,0,0,0,0, 1, 1) with cost 18 and dual solution u = (13,0, —4,0,0).
The corresponding reduced cost matrix for the subproblem is

-6 -7 -12 -8

7 6 8
8 6
. 9



The optimal 1-tree is Ti4 = Ti5 = T3 = Tpq = T35 = 1 with { = —~1. The
lower bound on zXPM increases to 18 — 1 = 17. As this 1-tree is a tour, it
follows from the alternative stopping criterion that it is optimal. Alternatively
one can check that its real cost is 17. .

11.3.2 Strength of the Linear Programming Master

How strong is the linear programming relaxation of the Master Problem? Ig
there some hope that it will solve the original problem IP?

Proposition 11.1

K K
2LPM ma.x{Zc"z" : EA":::" =b,z* € conv(X*) for k = 1,...,K}.
k=1 k=1

Proof. LPI\$ can be obtained from the original problem IP by substitut-
ing zF = p It :z:"",\k_t,zf;l Akt = LAge > 0fort = 1,...,T;. This is
equivalent to substituting z* € conv(X*). .

As discussed in the introduction to this chapter, when IP is decomposable,
Lagrangian relaxation and cutting plane algorithms are two possible alternat-
ive approaches. Specifically let wzp be the value of the Lagrangian dual when
the joint constraints 3~ | A*z* = b are dualized, and let zCUT be the value
obtained when cutting planes are added to the linear programming relaxation
of IP using an exact separation algorithm for each of the sets conv(X*) for
k=1,... K.

The next result, showing that all three approaches are in some sense equi-
valent as they lead to the same dual bounds, is based on Theorem 10.3, Pro-
position 11.1, and the fact that an exact separation algorithm for conv(X¥)
implicitly generates conv(X*).

Theorem 11.2 zLPM =, , — ,CUT,

As the subproblems solved in both the column generation and Lagrangian
dual approaches are optimization problems over X* , column generation can
be viewed as an algorithm for solving the Lagrangian dual in which the dual
variables 7 are updated using linear programming by solving the Restricted
Linear Programming Master. This is in comparison with the subgradient
algorithm often used to solve the Lagrangian dual that is based on a much
simpler updating procedure.

On the other hand, if we use the cutting plane approach, though the bound
obtained is potentially the same, separation problems over conv(X*) have to
be solved instead of optimization problems.

As the theoretical complexity of the optimization and separation problems
for conv(X*) is the same, the choice of approach depends on the relative
difficulty in solving the two problems as well as on the convergence of the
column generation and cutting plane algorithms in practice.

M CeVITIY Tt WV e ¢ et v e e -

11.4 P COLUMN GENERATION FOR 0-1 IP

If when the column generation algorithm terminates, the .optima.l solution
vector A = (X!,...,AX) of LPM is not integer, then IPM is not yet solved.
However, zLPM > » which suggests the possibility of using such upper bounds
in a branch-and-bound algorithm. In this section we present an algorithm for
0-1 problems using this bound, called an IP column generation or branch-

and-price algorithm.
Again we have the original problem

z = max{}_5_, ckzk : K Akzk =b,

(IP) Dkzk < dF fork=1,...,K, zxe B* fork=1,...,K},

and its reformulation
Z = max Ef:l Zﬁl(ckxk't)'\k,t
iy Tty (Ak ke h e = b
B Me=1fork=1,...,.K
Akt € {0,i}fort=1,...,T,k=1,..., K.

(IPM)

whose linear programming relaxation has optimal solution A.

Because the points z** € X* are distinct 0-1 vectors, note that .:'i:" =
Ef;l Ak:z®t € {0,1}™ if and only if X is integer. Therefore‘if A is not
integer, there is some « and j such that the corresponding 0-1 variable =7 has
linear programming value Z} that is fractional, and on which one can branf:h.

This suggests the branching scheme shown in Figure 11.1(a), in which
the set S of all feasible solutions is split into So = SN {z : z§f = 0} and
S1 = SN{z: z§ = 1}. Note that this is exactly the same type of scheme used

in the basic branch-and-bound algorithm in Chapter 7.

(a) (b)

Fig. 11.1 Branching for 0-1 column generation: (a) original (b) column variables

It is important now to make sure that it will still be possible to solve the new
linear programming master problems without difficulty. To do this we need



- SN I VIV I QN CTIVED

to define the new Master Problems associated with S; for ¢ = 0,1, and the
new subproblems.

Now as :c; = 23‘;1 )\k,t:r:?" € {0,1}, :1:;c = § € {0,1} implies that z?'t =4
for all k,t with Ak, > 0. So the Master Problem at node S; = SN{z: Tf =14}
fori=0,1is

z(8;) = max Zk#n Zt(ckzk't)’\k.t + Et:z;"=i(c~z"t)’\n.t
Pk (AR, + Zt:z;"=i(A‘$"'°)'\~,t =b
Sidke=1lfork#x

t:z;.‘"=i ’\Knt =1
Mg €{0,1} fort=1,...,Tx,k=1,...,K.

(IPM(S;))

This has the same form as the original Master Problem except that a set of
columns are excluded on each branch, and the previous LPM solution is now
infeasible. Turning to the column generation subproblems, the subproblem is
unchanged if k # x. However, for subproblem x and i = 0, 1, we have

¢x(Si) = max{(c* - 7A")z — ux :z € X", z; =i},

which is very similar to the original subproblem.

Another idea is to branch on some fractional Ak ; variable, fixing it to 0 and
1 respectively, see Figure 11.1(b). Note, however, that on the branch in which
Ak,¢ =0, just one column, corresponding to the tth solution of subproblem &,
is excluded, so the resulting problem is almost identical to the original one.
This means that the resulting enumeration tree has the undesirable property
of being highly unbalanced. In addition it is often difficult to impose the
condition Ax,: = 0, and thus to prevent the same solution being generated
again as optimal solution after branching.

One potential advantage of the column generation approach, visible in Ex-
ample 11.2, is that the optimal solutions to RLPM are often integral or close
to integral. In the first case this gives a feasible integer solution, and in the
second such a solution can often be obtained by a simple rounding heuristic.

11.5 IMPLICIT PARTITIONING/PACKING PROBLEMS

An important subclass of decomposable 0-1 IPs are packing and partitioning
problems. Given a finite set M = {1,...,m}, there are K implicitly described
sets of feasible subsets, and the problem is to find a maximum value packing
or partition of M consisting of certain of these subsets.

In terms of the original IP (11.5) of Section 11.2, we set z* = (y*, w*) with
y* € {0,1}™ the incidence vector of subset k of M, c* = (e*, f¥), A* = (1,0)
and b = 1. One should think of the variables w* as auxiliary variables needed
to define whether the subset with incidence vector y* is feasible, and to define

the possibly nonlinear objective value of the corresponding subset. So we have
the formulation

K K
z= max{Z(ekyk + fRwk): Zyk < 1,(yk,wk) eXFfork=1,...,K}.
k=1 k=1

Now if (y**, w**) corresponds to the tth feasible solution in the set X*, and
Ak,: is the corresponding variable, we obtain an equivalent Integer Program-
ming Master

z=max Y1 T1 (ekFyFt + frukt) e
Zf=1 Et:ygeJ:l Mg =1forie M

Th Me<lfork=1,....K
Me € {0,1} fort=1,...,Tx,k=1,...,K.
We now present several problems of this type. Clearly as the partitioning

problem is a special case of (11.5), the algorithm of the previous section can
be applied.

Multi-Item Lot-Sizing. Suppose we are given demands df for items k =
1,...,K over a time horizon t = 1,...,T. All items must be produced on
a single machine; the machine can produce only one item in each period and
has a capacity CF if item k is produced in period ¢. Given production, storage,
and set-up costs for each item in each period, we wish to find a minimum cost
production plan. This problem can be formulated as

mian:l Z’:I‘=1(szf + hEsk + fFyf)
YK yk<lfort=1,...,n
(z*, 5, ¥y e Xk fork=1,..., K

where X* = {(z*,s*,y*¥) € R? x R% x B" : sf_; +zf = df +sf, zf <
CkyF fort =1,...,n}.

Clustering. Given a graph G = (V, E), edge costs c. for € € E, node weights
d; for i € V, and a cluster capacity C, we wish to split the node set V' into
K (possibly empty) clusters satisfying the property that the sum of the node
weights in each cluster does not exceed C, in a way that minimizes the sum of
the weights of edges between clusters (maximizes the sum of weights of edges
within clusters). Figure 11.2 shows a feasible solution for an instance with 3
clusters and a capacity of 9. The thick edges are those between clusters. The
problem can be formulated as

K
maxd i ; Y.ck cews
YK yk<iforieV
(wi‘,yk) € Xkfork=1,...,K



where X* = {(w*,y¥) € B™ x B : wk < ¥, wk < yEwk > yF +uf — 1 for
€ = (3,7) € E, Yiey diyf < C} with y* = 1 if node i is in cluster k and
we =1 if edge e has both endpoints in cluster k.

K=3, C=9
Node weights shown

Fig. 11.2 Clustering solution with three clusters

Capacitated Vehicle Routing. Given a graph G = (V, E), a depot node 0, edge
costs c, for each e € E, K identical vehicles of capacity C, and client orders d;

for i € V'\ {0}, we wish to find a set of subtours (cycles) for each vehicle such

that (i) each subtour contains the depot, (ii) together the subtours contain all
the nodes, (iii) the subtours are disjoint on the node set V' \ {0}, and (iv) the

total demand on each subtour (the total amount delivered by each vehicle)

does not exceed C.

Another problem with such a decomposable structure is the generalized

assignment problem. An instance of GAP is treated by branch-and-cut in
Section 9.6.

11.6 PARTITIONING WITH IDENTICAL SUBSETS*

The clustering and vehicle routing problems of the last section both have the
property that the clusters or vehicles are interchangeable (independent of k).
This means that the numbering of the subsets is arbitrary, and exchanging
any two sets leads to an essentially identical solution.

Here we consider how the integer programming column generation al-
gorithm of Section 11.4 can be specialized to take account of this symmetry.
As X* = X, (¢*, f*) = (e, f) and T}, = T for all k, we can set \; = Zf—x Akt
and IPM now takes the form: -

max Zz;l(ey‘ + fwt)A,
Zt=v.’=l A=1lforieM

ET:l At S K
A e BT,

There is now just a single column generation subproblem. Letting the dual
variables associated with the linear programming relaxation be {m;};cp and

y, the subproblem is:
¢ =max{(e - )y + fw—p: (y,w) € X}

and LPM can be solved as in Section 11.3.

What happens if the solution A of LPM is not integral? It is now not at
all obvious how to recover the original variables z* or the A variables, so
the branching scheme proposed in Section 11.4 must be modified. We now

. consider two possibilities.

Branching Rules

(i) If Z;r___l At = a ¢ Z, then form two branches with EZ;I At < |a] and
Eg;__l At 2 [a] respectively.

(ii) A second possibility is based on the simple observation that if we take
two elements of M, either they appear together in some subset, or not. So we
choose a pair of elements (rows) 4 and j in M for which

0< Y A<l

tiyf=y;=1

and we then form two branches with 3 tytayt=1 At = 1 and D tyt=yta1 M =0
i J 11 i
respectively.

In the first case (i) we impose that i and j lie in the same subset, and in
the second case (ii) that they lie in different subsets. In case (i) all columns
corresponding to subsets @ containing either ¢ or j but not both are elimin-
ated from the Master Problem, and the constraint y; = y; is added to the
subproblem to ensure that any new column generated does not generate a
subset containing ¢ but not j, or vice versa. In case (ii) columns containing
both i and j are eliminated from the Master, and the constraint y; +y; <1
is added to the subproblem.

So, imposing the constraints y; = y; or y; + y; < 1 on each subproblem
permits us to branch as shown in Figure 11.3.

The following result says that this second branching scheme is sufficient.

Proposition 11.3 If X ¢ BT, there exist rows i,j € M such that

0< Y A<l
tiyf=yi=1



Fig. 11.3 A branching scheme for partitioning
Such a pair is also not difficult to find.

E.xample 11.2 Consider an instance of the clustering problem of Section 11.5
with G = (V, E) the complete graph on 3 nodes, K = 3 clusters, the objecti\.re
of choosing as many edges as possible within the clusters, and at most 2 nodes
allowed per cluster, that is, node weights d; = 1 for all i € V, edge weights
c. =1 for all e € E, and cluster capacity C = 2. ’ e

1. Solving LPM. Starting the Restricted LPM with isti
e T with clusters consisting of

max 01 + 0A2 + 03
121 + 0\ 4+ 0A3

OA; + 1A2 + 0A3

01 +0A2 +1)3

1M1 + 12+ 123
A20

A0
CO b ek

with RLPM value 0, primal solution A = (1,1,1), and dual solution 7 =

(0,0,0),« = 0. This provides a feasible solution igi
ectiv to the original £
objective value 0, and so we set z = 0. riginal problem o

2. Sf)lm'ng the Subproblem. The subproblem of selecting a feasible cluster of
maximum reduced price is !

¢ =minw;2 + w13 + w3 — Oyy — O0y2 — Oy3z — 0
wiz Sy, w2 Sy, w2 2 Y1 +y2—1
wiz SYLws Sy, w3 2y tyz—1
wo3 < Y2, wo3 S Y3, Wo3 2 Y2 +yz — 1
yity2+ys <2
w € BIEl y e BIVI

' giving { = 1 and an optimal solution wiz =y1 =y2 = 1.

3. Solution of LPM. After three iterations LPM is solved in the form
max 0A; + 0Ag + OAz + 1hg + 125 + 1)Xg

1A + 02 + OA3 + 124 +1Xs 4+ 0Xg

0\ + 12 + O3 + 1hg + 0Xs + 126

0A; + 0A2 + 1A3 +0Aq + 125 + 126

D+ 1+ A3+ 1A + 1Xs + 1)e

A20
LPM

it
GO = =

IA

with optimal solution Ay = As = A¢ = 3and z =3.

4. Branching. Taking rows i = 1 and [ = 2, we use the second branching
scheme and split the problem into two subproblems:

S, is the set of solutions in which nodes 1 and 2 do not lie in the same
cluster, so ) is obtained by setting Ay = 0 cutting off the existing solution.
All new clusters containing both nodes 1 and 2 are excluded.

S, is the set of solutions in which any cluster containing either 1 or 2 must
contain the other, so Sz is obtained by setting A=Ad3=X=X=0 cutting
off the existing solution. Any new clusters containing just one of the nodes
1,2 are excluded.

5. Reoptimizing for S1. With Ay = 0, the new RLPM is

max0A; +0Az +0A3 + 1As + 1)s
1M1 +0A2 +0A3 + 1As + O)Xg
0A; + 12 +0A3 + 025 + 1)Xs
0A; + 0z + 123+ 125 + 16
M+ 12+ 13+ 1A+ 1)6

A20

A
O =

with optimal primal solution A; = A¢ = 1, and dual solution = = (0,0,1),p =
0. The incumbent is updated, z = 1.

6. Subproblem for Si. The subproblem is
¢ = minw;z + w13 + waz — 1y — Oy2 — Oys — 0
wiz <yLwiz Sy wiz 2y +y2 -1
wis<yLwis <y w32y +y -1
wes < Y2, w23 <y, w3 Y2 +ys—1
ity tys<2
n+y2=<1
we BBl ye BVl



giving ¢ = 0. So LPM(S, ) is solved with z£PM(S,) = 1. The node is pruned
by bound.

7. Node S;. When setting A = A3 = A = A\ = 0, the new RLPM has unique
optimal solution Az = Ay = 1. We continue iterating between subproblem and
the restricted Master till LPM is solved with zXPM(S,) = 1. Then the node
is pruned by bound, and as there are no outstanding nodes, the incumbent
solution A\; = Ag = 1 is optimal. This corresponds to one cluster containing
node 1, another containing nodes 2,3, and the third necessarily empty. .

11.7 NOTES

11.1 The fundamental paper on the decomposition of linear programs, known
as Dantzig-Wolfe decomposition, is [DanWol60]. Recent surveys in this area
include [Barnetal94] and [Desetal95].

11.3 The first use of column generation to solve the Master linear program
arising from an integer programming problem is probably the work on the cut-
ting stock problem [GilGom61}, [GilGom63]. The equivalence of the bounds
provided by the linear programming Master and the Lagrangian dual has been
known since [GeoT74].

11.4 The first papers on integer programmingt column generation appeared
in the eighties [DesSouDes84],[DesSou89] on routing problems in which the
subproblems are constrained shortest path problems that are solved by dy-
namic programming.

11.5 The multi-item lot-sizing and clustering problems have been tackled by
integer programming decomposition in [Vdbeck94], and the clustering prob-
lem in [JohMehNem93], the generalized assignment problem in [Sav93], and
binary and integer cutting stock problems in [Vancetal94] and [Vdbeck96] re-
spectively.

11.6 The branching rule (ii) is from [RyaFos81]. Recent more general branch-
ing rules that are not restricted to 0-1 problems appear in [Barnetal94] and
[VdbeckWol96).

In [Ben62] an alternative resource-based reformulation and decomposition
approach is proposed; see Exercise 11.5.

11.8 EXERCISES

1. Consider the following instance of UFL with m = 4,n =3,

2 15
3 4 2

(cl'J') = 6 4 1 and f = (8’63 5)'
1 3 7

Reformulate using an Integer Programming Master Problem. Solve the Linear
Programming Master by column generation.

2. Solve the following instance of ST'SP by column generation

- 3 4 2
- - 5 6
=1 - - - 12

3. Consider GAP with equality constraints
mex i1, D7 CiiTis
iz =1fori=1,...,m

ez <bjforj=1,...,n
z € B™®,

2 1
1 1 ),andb=
1 2

by inter programming decomposition. Solve also by Lagrangian relax-

Solve an instance with m = 3,n = 2, (¢i;) = (ai;) = (

2
2
ation and by cutting planes and compare.

4. Formulate the Integer Programming Master and subproblems for the three
problems presented in Section 11.5.

5.* (Benders’ Reformulation). Use the results of Exercise 1.15 to show that
(MIP) z=max{cx + hy: Az +Gy < b,z € R},yeY C R}

has the equivalent formulation

z = max7n
n<u(b-Gy)+hyfors=1,...,8
v{(b-Gy)>0fort=1,...,T
yev.
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