
Fig. 10.3 Optimal I-tree for c1 

Iteration 2. u2 = {O, 0, -6, 3, 3). The new cost matrix is 

/-펀 <3l 47 37 \ 
| - - βo. 37 47 I 

(형)= I - - "-:::: .21 29 I 
1-- - -241 

We obtain z(u2) = 143 + 2 ε. u~ = 143, and 

u3 = u2 + ({148 - 143)/2)(0, O, -1, O, 1). 

F때. 10.4 Optimal I-tree for c2 

The new optimal 1-tree is shown in Figure 10.4. 

Iteration 3. u3 = {O, 0, -17 /2, 3, 11/2). 
The new cost matrix is 

I - 30 34.5 
I - - 32.5 

(형)=| -
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Fig. 10.5 Optimal I-tree for c3 

The new optimal 1-tree is shown in Figure 10.5 없id we obtain the lower 
bound z{u3) = 147.5. As the cost data c are integral, we know that z is 
i따eger valued and so z 즈 「147.51 = 148. As a solution of cost 148 is known, 
the corresponding solution has been proved optimal. • 

As the subgradient algorithm is often terminated before the optimal value 
ψLD 업 attained, 없id also as there 싫 in most C잃es a duality gap (ψLD > z), 
Lagrangian relaxation must typically be embedded in a branch-없id-bound 
algorithm. 

10.4 LAGRANGIAN HEURISTICS AND VARIABLE FIXING 

Once the dual variables u begin to approach the set of optimal solutions, 
a solution x(u) is obtained that is hopefully “'Close” to being primal feasible 
every time that a Lagrangian subproblem IP(u) is solved. In the STSP many 
nodes of the 1-tree will have degree 2, and so the solution is not far from being 
a tour, while for the U FL, many clients are seπ·ed exactly once, and 。nly a 
few are not served at 떠I. Therefore it is often straightforward to devise a 
simple heuristic that conve야S x(u) into a feasible solution without greatly 
decreasing/increasing its value/cost. 뻐elow we examine this simple idea for 
set covering problems, as well as the possibility of fixing some variables once 
g。。d primal and dual solutions are available. 

Consider an inst뻐ce of the set-covering problem 

min{ε c;x;: ε aijXj 즈 1 for i E M,x E Bn}, 
jEN jεN 

with ai; e {O, l} for i e M,j E N. The Lagrangian relaxation in which all 
the covering constraints are dualized is 

z(u) = ε Ui +min{ε(· - ε Uiai;)x; : x ε Bn} 
iεM jεN iEM 



CHOOSING A LAGRANGIAN DUAL 

Suppose the problem to be solved is of the form: 
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10.5 
for u > 0. 

One simple possibility 굉 to take an optimal solution x( u) of this relaxation 
drop all rows covered by the solution x(u), th하 is, the rows i E M for whi~h 
εjEN aijXj(u) 즈 1, and solve the remaining smaller covering problem by a 
greedy heuristic. If y• 농 the heuristic solution, then xH = x(u) + ν. is ’ 
&잃~ble s이ution It is the밍n worth checking whether it canr 
settmg to zero some of the variables with xi(u) = 1. 

(IP) 

If one wishes to tackle the problem by Lagrangian relaxation, there is a 
choice to be made. Should one du허ize one or both sets of constraints, and if 
so, which sets? The answer must be based on a trade-off between 

Once a heuristic solution has been found, it is 에so possible to use the 
Lagrangian for variable fixing. If 옹 is the incumbent value, then any better 
feasible solution x S'atisfies εκM ui+minEieN(ci-εiEM uiaii )xi $ ex < z 
짧 Ni = {j E N: Cj-εiEM uiaii > O} 뼈d No = {j E N : ci-εiEM Uiaij < 

(i) the stre”gth of the resulting Lagrangian dual bound WLD• Proposition 10.5 If k E N1 aπdε wν·+E (c·-εi u·a·;)+(c 
εieMuiaik) 켠, then Xk = 0 iπ an힘'et싸 쐐짧 s~lution. 

If k E No and εiEMUi + ε1εNo\{k}(Cj - εiEM Uiaij) 즈 강, then Xk =I 
·n any better feasible solution. 

(피) ease of solutioπ of the Lagrangi와l subproblems IP(u), and 

(iii) ease of solution of the Lagrangian dual problem: ψLD = minu2:0 z(u). 

Concerning (i), Theorem 10.3 gives us precise information about the 
stren밤h of the bound. 

Concerning (피), the ease of solution of IP( u) 업 problem specific. How­
ever, we know that if IP(u) is “ea원” in the sense of reducing to a linear 
program, that is IP(u) involves maximization over X = {x E z+ : Ax$ b} 
and conv(X) = {x E R뚱 : Ax $ b}, then solving the line하 pro망없nming 
relaxation of IP is 없l alternative to L뿔rangian relaxation. 

Concerning (늄i), the difficulty using the subgradient (or other) algorithms 
is hard to estimate a priori, but the number of dual variables is at least some 
measure of the pr。bable difficulty. 

To demonstrate these trade-offs, consider the Genemlized Assignment Prob­
lem (GAP): 

Example 10.3 Consider a set-covering instance with m = 4, n = 6, 
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z(u) = 14 + min{-lx1 + Ox2 + lxa + lx4 + Ix5 + Ix6: x E B6}. 

An optimal s이ution 흡 clearly x(u) = {1,0,0,0,0, 이 wth z(u) = 13. The 
solution x(u) covers rows I and 3, so the rem허피ng problem to be solved 
heuristically is 

z=maxε'l=l ε江1 다jXij 
εj=1Xij $1fori=1, ... ,m 

ε깜l aijXij $ 어 for j = 1, … ,π 
x E nmn. 

1 
1 

>->-
8x6 

+ 
댐
 5 

6 

&Z 

X 

+ 
+ 

5x4 
X4 

+ llx3 

X3 

+ 6x2 
X2 

min6x1+ 

We consider thr~풋 possible Lagrangian relaxations. In the first we dualize 
both sets of constraints giving t야D = minu으o,v2;0 w1(u, v) where 

ψ1(u, v) = maxz ε'l=l ε뜸1(다j - ui - aii띤)Xij + E江1 파 + ε'l=l Vjbj 
x E nmn. 

B6 

for which a greedy heuristic gives the solution y• = {0,0,0, 0, 1, O). Adding to­
gether these two vectors, we obtain the heuristic solution xH = (1. 0‘ 0. 0.1. 0) 
with cost 14. Thus we now know that the optimal value lies betw~n 13 ~nd 
14. 

Now using Proposition 10.5, we see that with No= {1} and N1={3,4, 5, 6}, 
xi = 1 and xa = X4 = Xs = X6 = 0 in any solution whose value is less than 
14. -

E x 

Here we dualize the first set of assignment constraints giving wlv = minu즈ot퍼(u) 
where 



10.5 A comparison of different Lagrangian relaxations for the capacitated 
fac피ty location pr。blem can be found in [CorSriThi91]. By duplicating vari­
ables, dualizing the equations identi~ng variables, and s이vin.g separate sub­
problems for each set of distinct variabI않, Lagrangian relaxation can be used 
to get stronger bounds in certain cases; see Exercise 10.6. Lagrangian decom­
position is one of several names given to th핍 idea [JorNas86], [GuiKim87]. 

Lagran링an relaxation is an import없it practical tool for many structured 
problems. Suπeys on the applications of Lagrangian du뼈ity include [Fis81] 
and [Beas93]. It suffices to open journals such as Operations Research, Maπ­
agemeπt Scieπce or the European Journal of Operations Research to find 
a wide variety of applications. [Beas93] lists 21 applications based on Lag­
rangian relaxation that were found in these thrE풍 journals just for 1991. 

EXERCISES 

1. Consider an inst뻐ce of UFL with m = 6,n = 5, delivery costs 

and fixed costs f = ( 4, 8, 11, 7, 5). Using the dual vector u = (5, 6, 3, 2, 6, 4), 
solve the Lagrangian subproblem IP(u) to get an optimal solution (x(u), y(u)) 
and lower bound z(u). Modi당 the du따 S이ution (x(u) ,ν( u)) to construct a 
good primal feasible solution. How far is this solution from optimal? 

2. Suppose one dualizes the constraints Xij 5 Y; in the strong formulation of 
U FL. How strong is the resulting Lagran밍없l du려 bound, and how easy is 
the solution of the Lagran밍an subproblem? 

3. Use Lagrangian relaxation to solve the STSP instance with distances 
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w2(u) =ma.xx E7=l ε;~1(다j - Ui)Xij + E江l Ui 

ε:1 aijXij 5 아 for j = 1, ... ,n 
XE Bmn, 

$짧r~ere we dualize the 때aps앓k constr없nts 밍ving 해D = minv즈O ψ3(v) 

ψ3(v) = maxz εJ=l ε江i(다j - ai;v; )xi; + εJ=l v;b; 

E'J=1 Xi; 5 1 for i = 1, ... , m 
XE Bmn. 
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10.7 
B잃ed on T뺨rem 10.3, we know th와 wiD =· wf,D = Z£p as for each i, 
conv{x : εj=l Xij 5 1, Xij ε {0,1} for j = 1, ... ,n} = {x: ε까=1 Xij < 
1, 0 $Xii $ 1 for j = 1,. .. , n}. The values of ψ1(u, v) and ψ3(v) J~ both 
h,e calculated 이 inspection. To calculate ψ1(u,v), n。te that the problem 
decomposes variable by variable, while for ψ3( u, v) the problem decomposes 
i따O a simple problem 야r each j = 1, ... , n. In terms of solving the Lagrangian 
dual problems, calculatmg t얘D appears easier than calculating 1야D because 
there are only m as opposed to m + n dual variables. 

The second relaxation potentially gives a tighter bound wzD $ ZLP 월 
필,홈eneral for fixed j, conv{x : ε江1 aijXij $ 야, Xi; E {0, l}m} ζ {x 
ιi=l a쉰Xi; $ b;, 0 $ Xi; $ 1 for i = 1, ... , m}. However, here the Lagrangian 

bproblem involves the solution of m 0-1 knapsack problems. 

NOTES 

10.1 Many of the prope야ies of the Lagrangian dual can be found in [Eve63}. 
The successful solution of what were at the time very large TSPs [He1Kar70}, 
[He1Kar71] made the approach popular. 

10.6 

10.2 The application to integer programming and in particular Theorem 10.3 
and its consequences were explored in [Geo74J. 

10.3 The use of the subgradient algorithm to solve the Lagrangian dual 
again stems from [He1Kar71이· Detailed studi않 and analysis of the subgradi-
nt approach can be found in [He1Wo1Cro74] and [Gof77]. Recently more 

sophisticated nondifferentiable optimization techniques have been useci; see 
[Lemetal95J. Simple multiplier adjustment methods have also been tri해 for 
various problems, 없nong them the uncapacitated facility location problem 
[Erl78]. An alternative approach, Dantzig-Wolfe decomp。sition, 월 treated in 
the next chapter. 


	start

