Fig. 10.3 Optimal 1-tree for &

Iteration 2. 4% = (0,0, -6,3,3). The new cost matrix is
- 80 (32 47 37

—
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We obtain z(u?) = 143 + 23", u2 = 143, and
u® = u® + ((148 — 143)/2)(0,0, -1,0, 1).
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Fig. 10.4 Optimal 1-tree for &2
The new optimal 1-tree is shown in Figure 10.4.

Iteration 3. u® = (0,0,-17/2,3,11/2).
The new cost matrix is

- 30 345 47 345
- — 325 37 445
@)= - - - 25 2
- 215

Fig. 10.5 Optimal 1-tree for &

The new optimal 1-tree is shown in Figure 10.5 and we obtain the lower
bound z(u3) = 147.5. As the cost data c are integral, we know that z is
integer valued and so z > [147.5] = 148. As a solution of cost 148 is known,
the corresponding solution has been proved optimal. .

As the subgradient algorithm is often terminated before the optimal value
wgp is attained, and also as there is in most cases a duality gap (wrp > 2),
Lagrangian relaxation must typically be embedded in a branch-and-bound
algorithm.

10.4 LAGRANGIAN HEURISTICS AND VARIABLE FIXING

Once the dual variables u begin to approach the set of optimal solutions,
a solution z(u) is obtained that is hopefully “close” to being primal feasible
every time that a Lagrangian subproblem I P(u) is solved. In the ST'SP many
nodes of the 1-tree will have degree 2, and so the solution is not far from being
a tour, while for the UF L, many clients are served exactly once, and only a
few are not served at all. Therefore it is often straightforward to devise a
simple heuristic that converts z(u) into a feasible solution without greatly
decreasing/increasing its value/cost. Below we examine this simple idea for
set covering problems, as well as the possibility of fixing some variables once
good primal and dual solutions are available.

Consider an instance of the set-covering problem
mxn{z CiTj ¢ Z a;;T; >1lforie M,z € Bn},
jJjEN JEN
with a;; € {0,1} for i € M,j € N. The Lagrangian relaxation in which all
the covering constraints are dualized is

z(u) = Z u; + min{Z(cj - Z u;0i5)Z; : ¢ € B™}

iEM JEN ieM



for u > 0.
One simple possibility is to take an optimal solution z(u) of this relaxation
drop all rows covered by the solution x(u), that is, the rows i € M for Whic};
2 jen @iZ;(u) > 1, and solve the remaining smaller covering problem by 5
greedy heuristic. If y* is the heuristic solution, then z¥ = z(u) + ¥* is
feasible solution. It is then worth checking whether it cannot be improved ba
setting to zero some of the variables with z;(u) = 1. Y

Once.a heuristic solution has been found, it is also possible to use the
Lag.rangxan for variable fixing. If Z is the incumbent value, then any better
feasible solution z satisfies Y, », ui+min 2 ien(Ci—Tien uiti;)Ti < cx < 3,

(I),;t Mi={7eN:e=Fiew tiay > 0}and No = {j €N : =2 ien Uity <

Proposition 10.5 Ifke Ny and 2iem Uit X jeny (G5 — i nr witiz) + (ck —
Zie M YiGik) > Z, then zi = 0 in any better feasible solution.

Ifk € No and 3, cppui + 3 (65 = Xiep witij) > Z, then x4 =
in any better feasibl; solution. JENMEY E‘GM @) 2 % =t

Example 10.3 Consider a set-covering instance with m = 4,n = 6,

C = (6, 6, 11, 5, 8, 8) a.nd aij =

o~o €
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Taking u = (4,4, 3, 3), the Lagrangian subproblem I P(u) takes the form

Z(u) =14 +min{—-1:x:1 + 0z2 + 1z3 + 124 + lzs+1xg iz € BG}.

An optimal solution is clearly z(u) = (1,0,0,0,0,0) wth z(u) = 13. The
solution z(u) covers rows 1 and 3, so the remaining problem to be solved
heuristically is

min6z;+ 6z; + 1llrz + 514 + 8z5 + 8z
T2 4y + 5
T3 Ts
z € BS

viv

for which a greedy heuristic gives the solution y* =(0,0,0,0,1,0). Adding to-
ggther these two vectors, we obtain the heuristic solution z¥ = (1,0,0,0,1,0)
;\Zth cost 14. Thus we now know that the optimal value lies between 13 and
Now using Proposition 10.5, we see that with Ny = {1}and M, = {3,4,5,6},
:lzi =1and 3 = 4 = 25 = z¢ = 0 in any solution whose value is less than
. | ]

10.5 CHOOSING A LAGRANGIAN DUAL

Suppose the problem to be solved is of the form:

Z = mMaxcr

Alz < B!

(IP) A’z < b2
z€Z}.

If one wishes to tackle the problem by Lagrangian relaxation, there is a
choice to be made. Should one dualize one or both sets of constraints, and if
so, which sets? The answer must be based on a trade-off between

(i) the strength of the resulting Lagrangian dual bound wy,p,
(ii) ease of solution of the Lagrangian subproblems IP(u), and
(iii) ease of solution of the Lagrangian dual problem: wrp = miny>o z(u).

Concerning (i), Theorem 10.3 gives us precise information about the
strength of the bound.

Concerning (ii), the ease of solution of IP(u) is problem specific. How-
ever, we know that if IP(u) is “easy” in the sense of reducing to a linear
program, that is 7P(u) involves maximization over X = {z € Z} : Az < b}
and conv(X) = {z € R} : Ar < b}, then solving the linear programming
relaxation of I P is an alternative to Lagrangian relaxation.

Concerning (iii), the difficulty using the subgradient (or other) algorithms
is hard to estimate a priori, but the number of dual variables is at least some

measure of the probable difficulty.
To demonstrate these trade-offs, consider the Generalized Assignment Prob-

lem (GAP):
z=max} 5, 3, ijTis
Z;;l:z:,-j <lfori=1,...,m
Z;’;la,-jx,-ijj forj=1,...,n .

T € B™",
We consider three possible Lagrangian relaxations. In the first we dualize
both sets of constraints giving w} , = min,>o,y30 w!(u,v) where

wh(u,v) = max, Z}’=1 Z:n-_-l(cij = U; — a;V5)Ti; + 2?;1 ui + Z?=1 v;bj
T € B™",

Here we dualize the first set of assignment constraints giving w} p = miny>o w?(u)
where



wh(u) = maxy 37, S, (65 — wi)zig + S ug
2:’;1 QijTij < bj fOI‘j = 1,...,'n
z € B™",

and here we dualize the knapsack constraints giving w} 5, = min,>g w3(v)
where

w3(v) = max, E?_—.l 2ii(e - a5v;)Ti; + Z;=1 v;b;
Yie1Ty S1lfori=1,...,m
T € B™®,

Based on Theorem 10.3, we know that wip = w}p = zrp as for each i,
conv{z : 3°%_  xi; < 1,75 € {0,1} for j = L...,n} ={z: ¥ 2y <
1,0<zy <lforj= 1,...,n}. The values of w!(u, v) and w3(v) can both
be calculated by inspection. To calculate w'(u,v), note that the problem
decomposes variable by variable, while for w3(u,v) the problem decomposes
into a simple problem for each j = 1,...,n. In terms of solving the Lagrangian
dual problems, calculating w} ,, appears easier than calculating w} ;, because
there are only m as opposed to m + n dual variables.

The second relaxation potentially gives a tighter bound w?, < z;p as
in general for fixed j, conv{z : Y12, ayzi; < bj,zi; € {0,1}"} C {z :

:’;1 4% < b;,0<x;; <1lfori=1,..., m}. However, here the Lagrangian
subproblem involves the solution of m 0—1 knapsack problems.

10.6 NOTES

10.1 Many of the properties of the Lagrangian dual can be found in [Eve63].
The successful solution of what were at the time very large TSPs [HelKar70],
[HelKar71] made the approach popular.

10.2 The application to integer programming and in particular Theorem 10.3
and its consequences were explored in [Geo74).

10.3 The use of the subgradient algorithm to solve the Lagrangian dual
again stems from [HelKar70]. Detailed studies and analysis of the subgradi-
ent approach can be found in [HelWolCro74] and [Gof77]. Recently more
sophisticated nondifferentiable optimization techniques have been used; see
[Lemetal95). Simple multiplier adjustment methods have also been tried for
various problems, among them the uncapacitated facility location problem
(Erl78]. An alternative approach, Dantzig-Wolfe decomposition, is treated in
the next chapter.

10.5 A comparison of different Lagrangian relaxations for the .cap.acitate_d
facility location problem can be found in {CorSriThid1]. By .duplxcatmg vari-
ables, dualizing the equations identifying variables, and solvmg separate sub-
problems for each set of distinct variables, Lagrangian relaxation can be used
to get stronger bounds in certain cases; see Exercise 10.6. Lagrang@.x% decom-
position is one of several names given to this idea [JorNas86], [GuiKim87].
Lagrangian relaxation is an important practical tool fOI" many struct'ured
problems. Surveys on the applications of Lagrangian du‘a.lxty include [Fis81]
and [Beas93]. It suffices to open journals such as Opera'tzons Research, Man-
agement Science or the European Journal of Operations Research to find
a wide variety of applications. [Beas93] lists 21 applications based on Lag-
rangian relaxation that were found in these three journals just for 1991.

10.7 EXERCISES

1. Consider an instance of UFL with m = 6,n = 5, delivery costs

6 2 1 3 5
4 10 2 6 1
3 2 41 3
%=l 2 0 41 4
1 8 625
3 2 4 8 1

and fixed costs f = (4,8,11,7,5). Using the dual vector u = (5,6,3,2,6,4),
solve the Lagrangian subproblem I P(u) to get an optimal solution (z(u), y(u))
and lower bound z2(u). Modify the dual solution (z(u),y(u)) to construct a
good primal feasible solution. How far is this solution from optimal?

2. Suppose one dualizes the constraints z;; < y; in the strong formulation <.>f
UFL. How strong is the resulting Lagrangian dual bound, and how easy is
the solution of the Lagrangian subproblem?

3. Use Lagrangian relaxation to solve the STSP instance with distances

- 8 2 14 26 13

- - 7 4 16 8
(c)=| - - - 23 14 9
- - - - 12 6
- — - = - 5
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