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The minimal description is given by

T < 2
2z; + a2 < 6
Ty + Ty 2> 2
I Z 0.

9.2,3 Facet and Convex Hull Proofs*

This section is for those interested in proving results about the strength of
certain inequalities or formulations. The aim is to indicate ways to show that
a valid inequality is facet-defining, or that a set of inequalities describes the
convex hull of some discrete set X C Z7.

For simplicity we assume throughout this subsection that conv(X) is
bounded as well as full-dimensional. So there are no hyperplanes contain-
ing all the points of X. As example we take the set X = {(z,y) € RT x B! :
>-it1 Zi < my} that arises in Sections 1.6 and 8.4 in formulating the uncapa-
citated facility location problem.

Problem 1. Given X C Z7} and a valid inequality 7z < mp for X, show that
the inequality defines a facet of conv(X).

We consider two different approaches.

Approach 1. (Just use the definition.) Find n points z!,...,z" € X satis-
fying mx = m, and then prove that these n points are affinely independent.

Approach 2. (An indirect but useful way to verify the affine independence.)
(i) Select t > n points z!,...,zt € X satisfying mz = mp. Suppose that all
these points lie on a generic hyperplane pux = .

(ii) Solve the linear equation system

n
Zujz;F:uo for k=1, e
Jj=1

in the n + 1 unknowns (u, o).
(iii) If the only solution is (i, o) = A(m,mo) for A # 0, then the inequality
mz < mp is facet-defining.

Example 9.3 Taking X = {(z,y) € RT x B! : "I~ z; < my}, we have that
dim(conv(X) = m+ 1. Now we consider the valid inequality z; < y and show
that it is facet-defining using Approach 2.

We select the simplest points (0,0), (e;,1) and (e; + ej,1) for j # i that
are feasible and satisfy z; = y.
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As (0,0) lies on 370 pii + fm41y = Mo, po = 0.

As (e;, 1) lies on the hyperplane Y i~ piZi + pim41y = 0, fti = —fim41.

As (e; +e;, 1) lies on the hyperplane /", p;z; — piy = 0, p; = 0 for j # i.

So the hyperplane is p;z; — p;y =0, and z; < y is facet-defining. .
Problem 2. Show that the polyhedron P = {z € R" : Az < b} describes
conv(X).

Here we present eight approaches.

Approach 1. Show that the matrix A, or the pair (A,b) have special struc-
ture guaranteeing that P =conv(X).

Example 9.4 Take X = {(z,y) € RT x B! : 1", z; < my}, and consider
the polyhedron/formulation

P={(x,y)eR$xR1 iy Syfori=1...;my<i}

Observe that the constraints z; —y < 0 for i = 1,...,m lead to a matrix with
a coefficient of +1 and —1 in each row. Such a matrix is TU; see Proposition
3.2. Adding the bound constraints still leaves a TU matrix. Now as the
requirements vector is integer, it follows from Proposition 3.3 that all basic
solutions are integral, and P = conv(X). =

Approach 2. Show that points (z,y) € P with y fractional are not extreme
points of P.

Example 9.4 (cont) Suppose that (z*,y*) € P with 0 < y* < 1. Note first
that (0,0) € P. Also as z} < y*, the point (3* Zm 1) € P. But now

- SRR N
3 Ty
(z*,y") = (1 =*)(0,0) +y‘(5%a---» yT’l)

is a convex combination of two points of P and is not extreme. Thus all
vertices of P have y* integer. a

Approach 3. Show that for all ¢ € R™, the linear program zLP = max{cz :
Az < b} has an optimal solution z* € X.

Example 9.4 (cont) Consider the linear program 22 = max{} 1", cizi +
fy:0<z; <yfori=1,...,m,y <1}. Consider an optimal solution (z*, y*).
Because of the constraints 0 < z; < y, any optimal solution has z} = y* if ¢; >
0 and z} = 0 if ¢; < 0. The corresponding solution value is (}_,..,5¢ ¢ + f)y*
if y* > 0 and 0 otherwise. Obviously if (3_;..,50¢i + f) > 0, the objective is
maximized by setting y* = 1, and otherwise y* = 0 is optimal. Thus there is
always an optimal solution with y integer, and z2P =(}_,  Soci + ). "
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Approach 4. Show that for all ¢ € R™, there exists a point z* € X and
a feasible solution u* of the dual LP w’P = min{ub,ud = c,u > 0} with
cz* = u*b. Note that this implies that the condition of Approach 3 is satisfied.

Example 9.4 (cont) The dual linear program is

mint
w; >cifori=1,...,m
—Timwitt>f
w; >0fori=1,...,m,t>0.

Consider the two points (0,0) and (z*,1) with 2} = 1if ¢; > 0 and 2z} =0
otherwise. Taking the better of the two leads to a primal solution of value
(Cici>0Ci+ )t Thepointw; =cf fori=1,...,mandt = (¥, . 5oc+f)*
is clearly feasible in the dual. Thus we have found a point in X and a dual
solution of the same value. ©

Approach 5. Show that if 7z < mo defines a facet of conv(X), then it must
be identical to one of the inequalities a’z < b; defining P.

Example 9.4 (cont) Consider the inequality Y i, miZ;i + Tm4+1y < mo. Let
S={ie{l,....m}:m >0}and T = {i € {1,...,m} : m; < 0}. Note that
as the point (0,0) € X, m > 0, and as (e5,1) € X, Y ies i + Tm41 < o,
where e° is the characteristic vector of S. Also a facet-defining inequality
must have a tight point with y = 1. The point (e, 1) maximizes the lhs, and
80 ) ics i+ Mmy1 = o > 0.

Now consider the valid inequality obtained as a nonnegative combination
of valid inequalities:

x; —y < 0 with weight w; fori € S

—x; < 0 with weight —m; fori € T'

y < 1 with weight ) ..o i + 1.

The resulting inequality is ;" mi%; + Tm41y < Y ;e Mi + Tm41. This
dominates or equals the original inequality as Zie g+ Tm41 < mo. So the
only inequalities that are not nonnegative combinations of other inequalities
are those describing P. 8

Approach 6. Show that for any ¢ € R",¢c # 0, the set of optimal solu-
tions M(c) to the problem max{cz : z € X} lies in {z : a’z = b;} for some
i=1,...,m, where a’z < b; for i = 1,---,m are the inequalities defining P.

Example 9.4 (cont) Consider an arbitrary objective (c, f) € R™ x R'.
If f >0,y =1 in every optimal solution and so M(c, f) € {(z,y) : y = 1}.
If ¢; < 0, then z; = 0 in every optimal solution.
If ¢; > 0 and f <0, then z; = y in every optimal solution.
If ¢; =0 for all i and f < 0, then z; = 0 in any optimal solution.
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All cases have been covered, and so P =conv(X). ]

Approach 7. Verify that b € Z™, and show that for all ¢ € Z™, the optimal
value of the dual w”? is integer valued. This is to show that the inequalities
Az < b form a TDI system, see Theorem 3.14.

Example 9.4 (cont) We have shown using Approach 4 that wif =
(Xie,>0Ci + f)*. This is integer valued when ¢ and f are integral. -

Approach 8. (Projection from an Extended Formulation). Suppose @ C
R™ x RP is a polyhedron with P = proj.(Q) as defined in Section 1.7. Show
that for all ¢ € R™, the linear program max{cz : (z,w) € Q} has an optimal
solution with z € X.

Example 9.5 (Uncapacitated Lot-Sizing). It can be shown that solving the
extended formulation presented in Section 1.6 as a linear program gives a

solution with the set-up variables yi,...,yn integral, and thus provides an
optimal solution to ULS. So its projection to the (z,y, s) space describes the
convex hull of solutions to ULS. L]

9.3 0-1 KNAPSACK INEQUALITIES

Consider the set X = {x € B": }_7_, a;z; < b}. Complementing variables if
necessary by setting Z; = 1 — z;, we assume throughout this section that the
coefficients {a;}}7_; are positive. Also we assume b > 0. Let N = {1,...,n}.

9.3.1 Cover Inequalities

Definition 9.6 A set C C N is a coverif 3., a; > b. A cover is minimal
if C'\ {7} is not a cover for any j € C.

Note that C is a cover if and only if its associated incidence vector z€ is
infeasible for S.

Proposition 9.3 IfC C N is a cover, the cover inequality
Y z<ic| -1
Jj€EC

is valid for X.

Proof. We show that if z® does not satisfy the inequality, then = ¢ X.
If decma > C | -1, then | RNC |=| C | and thus R 2 C. Then

Y i=1 G55 —ZeRa,ZZJECa,>bandsoxR¢X .





