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The minimal description is given by 
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Facet and Convex Hull Proofs* 

This section is for those interested in proving results about the stren방h of 
certain inequalities or formulations. The aim is to indicate ways to show that 
a valid inequality is facet-defining, or that a set of inequalities describes the 
convex hull of some discrete set X C z+. 

For simplicity we assume throughout this subsection that conv(X) is 
bounded as well as full-dimensional. So there are no hyperplanes contain
ing all the points of X. As example we take the set X = {(x, ν) ER+ × Bi: 
ε뜸1 Xi~ mν} that arises in Sections 1.6 and 8.4 in formulating the uncapa
citated facility location problem. 

9.2.3 

Problem 1. Given X c z+ and a valid inequality πz ~ no for X, show that 
the inequality defines a facet of conv(X). 

We consider two different approaches. 

Approach 1. (Just use the definition.) Find n points 상, .. ,xn EX satis
fying πz = πo, and then prove that these n points are affinely independent. 

Approach 2. (An indirect but useful way to verify the affine independence.) 
(i) Select t 즈 n points 상 , - - - , 삼 E X satisfying πx = πO · Suppose that all 
these points lie on a generic hyperplane µx = µo. 
(ii) Solve the linear equation system 

εµjxj = µo fork= 1,. , t 

in the n + 1 unknowns (µ, µ0) . 
(iii) If the only solution is (µ, µ0) = >.(n, no) for >. =f: 0, then the inequality 
πz ~ πo is facet-defining. 

Ex~mple 9.3 Taking X = {(x, ν) ER+ × Bi: ε;:1Xi ~ mν}, we have that 
dim(conv(X) = m + 1. Now we consider the valid inequality Xi ~ ν and show 
that it is facet-defining using Approach 2. 

We select the simplest points (0』), (ei, 1) and (e‘ + ej, 1) for j =f: i that 
are feasible and satisfy Xi = y. 
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As (0, 이 lies on ε;:i µixi + µm+iY = µo, µo = 0. 
As (ei, 1) lies on the hyperplane ε;:1µix‘ +µm+lν = 0, µi = -µm+l· 
As (ei + ej, 1) lies on the hyperplane 2:~1 μ‘Xi -µiν = 0, µj = 0 for j =I i . 
So the hyperplane is µ;xi - μ.ν = 0, and Xi~ ν is facet-defining. • 

Problem 2. Show that the polyhedron P = {x E Rn : Ax S b} describes 
conv(X). 

Here we present eight approaches. 

Approach 1. Show that the matrix A, or the p머r (A, b) have special struc
ture guaranteeing that P =conv(X). 

Example 9.4 Take X = {(x, ν) ER+ × Bi: ε;:l X; Smν}, and consider 
the polyhedron/formulation 

P = {(x,y) E R'.f x R1: xi Sy for i = 1, . . . , m,y S 1}. 

Observe that the constraints Xi - ν S 0 for i = 1, ... , m lead to a matrix with 
a coefficient of +1 and -1 in each row. Such a matrix is TU; see Proposition 
3.2. Adding the bound constraints still leaves a TU matrix. Now as the 
requirements vector is integer, it follows from Proposition 3.3 that all basic 
solutions are integral, and P = conv(X). • 

Approach 2. Show that points (x, y) E P with ν fractional are not extreme 
points of P. 

Example 9.4 (cont) Suppose that (x*,y*) E P with 0 < ψ < 1. Note first 
th하 (0, 이 E P. Also 잃 착 s ν·, the point (휩, , 폼, 1) E P. But now 

(x*, y*) = (1 - ψ)(0, 0) + ψ (감, , 웰, 1) 
ν νf 

is a convex combination of two points of P and is not extreme. Thus all 
vertices of P have y• integer. • 

Approach 3. Show that for all c E Rn, the linear program zLP = max{ ex : 

Ax Sb} has an optimal solution x• EX. 

Example 9.4 (cont) Consider the linear program zLP = max{ε江1 다Xi+ 
fν : OSxi S ν for i = 1, . . . , m , ν $ 1 }. Consider an optimal solution (x*, ν·) . 
Because of the constraints 0 $ x, $ y, any optimal solution has 작 = ν· if c‘ >
0 and 착 = 0 if 다 < 0. The corresponding solution value is (ε“‘>0 다 +/)ν· 
if ψ > 0 and 0 otherwi않· Obviously if (εi:c‘ >O Ci+!) > 0, the objective 씹 
maximized by setting ψ = 1, and otherwise ψ = 0 is optimal. Thus there is 
always an optimal solution with ν integer, and zLP = (εi: c‘ >0 Ci +!)+ . • 
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Approach 4. Show that for all c E Rn, there exists a point x* E X and 
a feasible solution u* of the dual LP wLP = min{ub, uA = c, u 즈 O} with 
ex* = u*b. Note that this implies that the condition of Approach 3 is satisfied. 

Example 9.4 (cont) The dual linear program is 

mint 

ψ‘ 2 다 for i = 1, ... ,m 

-L:江1ψi + t 2 f 
ψ. 즈 0 for i = 1, ... , m, t 즈 0. 

Consider the two points (0, 0) and (x*, 1) with 착 = 1 if Ci > 0 and x; = 0 
otherwise. Taking the better of the two leads to a primal solution of value 
(εi:c‘>O ci+ J)+. The point 따 = ct for i = 1, .. . , m and t = (εi:c;>O Ci+ J)+ 
is clearly feasible in the dual. Thus we have found a point in X and a dual 
solution of the same value. • 

Approach 5. Show that if πx :::; πo defines a facet of conv(X), then it must 
be identical to one of the inequalities aix :::; bi defining P . 

Example 9.4 (cont) Consider the inequality ε江111'iXi + πm+lν :::; 7ro. Let 
S={iE{l, ... ,m}: 자 > O} and T = {i E {l, ... ,m}: πi < O}. Note that 
as the point (0, 0) E X, πo 즈 0, and as (e8, 1) EX, εiES π. + πm+l ::=; πo, 
where e8 is the characteristic vector of S. Also a facet.:-defining inequality 
must have a tight point with ν = 1. The point ( e8, 1) maximizes the lhs, and 
so Lies π. + πm+1= πo 즈 0. 

Now consider the valid inequality obtained as a nonnegative combination 
of valid inequalities: 

Xi - y :::; 0 with weight πi for i E 8 
-xi :'.S 0 with weight -π. for i ET 
ν :::; 1 with weight εiES πi + πf:n+i· 
The resulting inequality is ε뜸1 πiXi + πm+1Y:::; εiES 자 + πm+l· This 

dominates or equals the original inequality as ε,es 따 + πm+l ::=; πO· So the 
only inequalities that are not nonnegative combinations of other inequalities 
are those describing P. • 

Approach 6. Show that for any c E Rn, c i= 0, the set of optimal s이u
tions M(c) to the problem max{cx: x EX} lies in _{x: aix =bi} for some 
i = 1, ... , m, where a‘x :::; bi for i = 1, · · ·, m are the inequalities defining P . 

Example 9.4 (cont) Consider an arbitrary objective (c, f) E Rm x R1. 
If f > 0, ν = 1 in every optimal solution and so M(c, f) E {(x, ν) : ν = 1}. 
If Ci < 0, then xi = 0 in every optimal solution. 
If Ci> 0 and f:::; 0, then Xi= ν in every optimal solution. 
If Ci = 0 for all i and f < 0, then Xi = 0 in any optimal solution. 
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All cases have been covered, and so P =conv(X) . • 

Approach 7. Verify that b E zn, and show that for all c E zn, the optimal 
value of the dual wLP is integer valued. This is to show that the inequalities 
Ax::; b form a TDI system, see Theorem 3.14. 

Example 9.4 (cont) We have shown using Approach 4 that wLP = 
(l:i:c;>O C‘ + !)+. This is integer valued when c and fare integral. • 

Approach 8. (Projection from an Extended Formulation) . Suppose Q 드 
Rn x RP is a polyhedron with P = proj;,;(Q) as defined in Section 1.7. Show 
that for all c E Rn, the linear program max{cx: (x, ψ) E Q} has an optimal 
solution with x E X. 

Example 9.5 (Uncapacitated Lot-Sizing) . It can be shown that solving the 
extended formulation presented in Section 1.6 as a linear program gives a 
solution with the set-up variables yi, ... , Yn integral, 뻐d thus provides an 
optimal solution to U LS. So its projection to the (x, y, s) space describes the 
convex hull of solutions to ULS. • 

9.3 0-1 KNAPSACK INEQUA니TIES 

Consider the set X = { x ε nn: ε까=l a;x; ::; b}. Complementing variables if 
necessary by setting x j = 1 - x j' we 잃sume throughout this section that the 
coefficients {a; }j=1 are positive. Also we assume b > 0. Let N = {1, .. . , n } . 

9.3.1 Cover Inequalities 

Definition 9.6 A set C 드 N is a cover if EiEG ai > b‘ A cover is minimal 
if C \ {j} is not a cover for any j EC. 

Note that C is a cover if and only if its 잃sociated incidence vector x0 is 
infeasible for S. 

Proposition 9.3 If C 드 N is a coveπ the cover inequality 

is valid for X . 

εXj ::;1 c I -1 
jεc 

Proof. We show that if xR does not satisfy the inequality, then xR ¢. X. 
If εiECx: >I C I -1, then I Rn C l=I C I and thus R 2 C. Then 

ε;=1 a;x: = εjERai 즈 εiECai >band so xR 훌 x. • 




