The minimal description is given by

$$
\begin{array}{cl}
x_{1} & \leq 2 \\
2 x_{1}+x_{2} & \leq 6 \\
x_{1}+x_{2} & \geq 2 \\
x_{1} & \geq 0 .
\end{array}
$$

9.2.3 Facet and Convex Hull Proofs*

This section is for those interested in proving results about the strength of certain inequalities or formulations. The aim is to indicate ways to show that a valid inequality is facet-defining, or that a set of inequalities describes the convex hull of some discrete set $X \subset Z_{+}^{n}$.

For simplicity we assume throughout this subsection that $\operatorname{conv}(X)$ is bounded as well as full-dimensional. So there are no hyperplanes containing all the points of X. As example we take the set $X=\left\{(x, y) \in R_{+}^{m} \times B^{1}\right.$: $\left.\sum_{i=1}^{m} x_{i} \leq m y\right\}$ that arises in Sections 1.6 and 8.4 in formulating the uncapacitated facility location problem.

Problem 1. Given $X \subset Z_{+}^{n}$ and a valid inequality $\pi x \leq \pi_{0}$ for X, show that the inequality defines a facet of $\operatorname{conv}(X)$.

We consider two different approaches.
Approach 1. (Just use the definition.) Find n points $x^{1}, \ldots, x^{n} \in X$ satisfying $\pi x=\pi_{0}$, and then prove that these n points are affinely independent.

Approach 2. (An indirect but useful way to verify the affine independence.)
(i) Select $t \geq n$ points $x^{1}, \ldots, x^{t} \in X$ satisfying $\pi x=\pi_{0}$. Suppose that all these points lie on a generic hyperplane $\mu x=\mu_{0}$.
(ii) Solve the linear equation system

$$
\sum_{j=1}^{n} \mu_{j} x_{j}^{k}=\mu_{0} \text { for } k=1, \ldots, t
$$

in the $n+1$ unknowns $\left(\mu, \mu_{0}\right)$.
(iii) If the only solution is $\left(\mu, \mu_{0}\right)=\lambda\left(\pi, \pi_{0}\right)$ for $\lambda \neq 0$, then the inequality $\pi x \leq \pi_{0}$ is facet-defining.

Example 9.3 Taking $X=\left\{(x, y) \in R_{+}^{m} \times B^{1}: \sum_{i=1}^{m} x_{i} \leq m y\right\}$, we have that $\operatorname{dim}\left(\operatorname{conv}(X)=m+1\right.$. Now we consider the valid inequality $x_{i} \leq y$ and show that it is facet-defining using Approach 2.

We select the simplest points $(0,0),\left(e_{i}, 1\right)$ and $\left(e_{i}+e_{j}, 1\right)$ for $j \neq i$ that are feasible and satisfy $x_{i}=y$.

As $(0,0)$ lies on $\sum_{i=1}^{m} \mu_{i} x_{i}+\mu_{m+1} y=\mu_{0}, \mu_{0}=0$.
As $\left(e_{i}, 1\right)$ lies on the hyperplane $\sum_{i=1}^{m} \mu_{i} x_{i}+\mu_{m+1} y=0, \mu_{i}=-\mu_{m+1}$.
As $\left(e_{i}+e_{j}, 1\right)$ lies on the hyperplane $\sum_{i=1}^{m} \mu_{i} x_{i}-\mu_{i} y=0, \mu_{j}=0$ for $j \neq i$.
So the hyperplane is $\mu_{i} x_{i}-\mu_{i} y=0$, and $x_{i} \leq y$ is facet-defining.

Problem 2. Show that the polyhedron $P=\left\{x \in R^{n}: A x \leq b\right\}$ describes $\operatorname{conv}(X)$.

Here we present eight approaches.
Approach 1. Show that the matrix A, or the pair (A, b) have special structure guaranteeing that $P=\operatorname{conv}(X)$.

Example 9.4 Take $X=\left\{(x, y) \in R_{+}^{m} \times B^{1}: \sum_{i=1}^{m} x_{i} \leq m y\right\}$, and consider the polyhedron/formulation

$$
P=\left\{(x, y) \in R_{+}^{m} \times R^{1}: x_{i} \leq y \text { for } i=1, \ldots, m, y \leq 1\right\} .
$$

Observe that the constraints $x_{i}-y \leq 0$ for $i=1, \ldots, m$ lead to a matrix with a coefficient of +1 and -1 in each row. Such a matrix is TU; see Proposition 3.2. Adding the bound constraints still leaves a TU matrix. Now as the requirements vector is integer, it follows from Proposition 3.3 that all basic solutions are integral, and $P=\operatorname{conv}(X)$.

Approach 2. Show that points $(x, y) \in P$ with y fractional are not extreme points of P.

Example 9.4 (cont) Suppose that $\left(x^{*}, y^{*}\right) \in P$ with $0<y^{*}<1$. Note first that $(\mathbf{0}, 0) \in P$. Also as $x_{i}^{*} \leq y^{*}$, the point $\left(\frac{x_{i}^{*}}{y^{*}}, \ldots, \frac{x_{m}^{*}}{y^{*}}, 1\right) \in P$. But now

$$
\left(x^{*}, y^{*}\right)=\left(1-y^{*}\right)(0,0)+y^{*}\left(\frac{x_{1}^{*}}{y^{*}}, \ldots, \frac{x_{m}^{*}}{y^{*}}, 1\right)
$$

is a convex combination of two points of P and is not extreme. Thus all vertices of P have y^{*} integer.

Approach 3. Show that for all $c \in R^{n}$, the linear program $z^{L P}=\max \{c x$: $A x \leq b\}$ has an optimal solution $x^{*} \in X$.

Example 9.4 (cont) Consider the linear program $z^{L P}=\max \left\{\sum_{i=1}^{m} c_{i} x_{i}+\right.$ $f y: 0 \leq x_{i} \leq y$ for $\left.i=1, \ldots, m, y \leq 1\right\}$. Consider an optimal solution (x^{*}, y^{*}). Because of the constraints $0 \leq x_{i} \leq y$, any optimal solution has $x_{i}^{*}=y^{*}$ if $c_{i}>$ 0 and $x_{i}^{*}=0$ if $c_{i}<0$. The corresponding solution value is $\left(\sum_{i: c_{i}>0} c_{i}+f\right) y^{*}$ if $y^{*}>0$ and 0 otherwise. Obviously if $\left(\sum_{i: c_{i}>0} c_{i}+f\right)>0$, the objective is maximized by setting $y^{*}=1$, and otherwise $y^{*}=0$ is optimal. Thus there is always an optimal solution with y integer, and $z^{L P}=\left(\sum_{i: c_{i}>0} c_{i}+f\right)^{+}$.

Approach 4. Show that for all $c \in R^{n}$, there exists a point $x^{*} \in X$ and a feasible solution u^{*} of the dual LP $w^{L P}=\min \{u b, u A=c, u \geq 0\}$ with $c x^{*}=u^{*} b$. Note that this implies that the condition of Approach 3 is satisfied.

Example 9.4 (cont) The dual linear program is

$$
\begin{gathered}
\min t \\
w_{i} \geq c_{i} \text { for } i=1, \ldots, m \\
-\sum_{i=1}^{m} w_{i}+t \geq f \\
w_{i} \geq 0 \text { for } i=1, \ldots, m, t \geq 0
\end{gathered}
$$

Consider the two points $(\mathbf{0}, \mathbf{0})$ and $\left(x^{*}, 1\right)$ with $x_{i}^{*}=1$ if $c_{i}>0$ and $x_{i}^{*}=0$ otherwise. Taking the better of the two leads to a primal solution of value $\left(\sum_{i: c_{i}>0} c_{i}+f\right)^{+}$. The point $w_{i}=c_{i}^{+}$for $i=1, \ldots, m$ and $t=\left(\sum_{i: c_{i}>0} c_{i}+f\right)^{+}$ is clearly feasible in the dual. Thus we have found a point in X and a dual solution of the same value.

Approach 5. Show that if $\pi x \leq \pi_{0}$ defines a facet of $\operatorname{conv}(X)$, then it must be identical to one of the inequalities $a^{i} x \leq b_{i}$ defining P.

Example 9.4 (cont) Consider the inequality $\sum_{i=1}^{m} \pi_{i} x_{i}+\pi_{m+1} y \leq \pi_{0}$. Let $S=\left\{i \in\{1, \ldots, m\}: \pi_{i}>0\right\}$ and $T=\left\{i \in\{1, \ldots, m\}: \pi_{i}<0\right\}$. Note that as the point $(0,0) \in X, \pi_{0} \geq 0$, and as $\left(e^{S}, 1\right) \in X, \sum_{i \in S} \pi_{i}+\pi_{m+1} \leq \pi_{0}$, where e^{S} is the characteristic vector of S. Also a facet-defining inequality must have a tight point with $y=1$. The point $\left(e^{S}, 1\right)$ maximizes the lhs, and so $\sum_{i \in S} \pi_{i}+\pi_{m+1}=\pi_{0} \geq 0$.

Now consider the valid inequality obtained as a nonnegative combination of valid inequalities:
$x_{i}-y \leq 0$ with weight π_{i} for $i \in S$
$-x_{i} \leq 0$ with weight $-\pi_{i}$ for $i \in T$
$y \leq 1$ with weight $\sum_{i \in S} \pi_{i}+\pi_{m+1}$.
The resulting inequality is $\sum_{i=1}^{m} \pi_{i} x_{i}+\pi_{m+1} y \leq \sum_{i \in S} \pi_{i}+\pi_{m+1}$. This dominates or equals the original inequality as $\sum_{i \in S} \pi_{i}+\pi_{m+1} \leq \pi_{0}$. So the only inequalities that are not nonnegative combinations of other inequalities are those describing P.

Approach 6. Show that for any $c \in R^{n}, c \neq 0$, the set of optimal solutions $M(c)$ to the problem $\max \{c x: x \in X\}$ lies in $\left\{x: a^{i} x=b_{i}\right\}$ for some $i=1, \ldots, m$, where $a^{i} x \leq b_{i}$ for $i=1, \cdots, m$ are the inequalities defining P.

Example 9.4 (cont) Consider an arbitrary objective (c,f) $\in R^{m} \times R^{1}$.
If $f>0, y=1$ in every optimal solution and so $M(c, f) \in\{(x, y): y=1\}$.
If $c_{i}<0$, then $x_{i}=0$ in every optimal solution.
If $c_{i}>0$ and $f \leq 0$, then $x_{i}=y$ in every optimal solution.
If $c_{i}=0$ for all i and $f<0$, then $x_{i}=0$ in any optimal solution.

All cases have been covered, and so $P=\operatorname{conv}(X)$.
Approach 7. Verify that $b \in Z^{n}$, and show that for all $c \in Z^{n}$, the optimal value of the dual $w^{L P}$ is integer valued. This is to show that the inequalities $A x \leq b$ form a TDI system, see Theorem 3.14.

Example 9.4 (cont) We have shown using Approach 4 that $w^{L P}=$ $\left(\sum_{i: c_{i}>0} c_{i}+f\right)^{+}$. This is integer valued when c and f are integral.

Approach 8. (Projection from an Extended Formulation). Suppose $Q \subseteq$ $R^{n} \times R^{p}$ is a polyhedron with $P=\operatorname{proj}_{x}(Q)$ as defined in Section 1.7. Show that for all $c \in R^{n}$, the linear program $\max \{c x:(x, w) \in Q\}$ has an optimal solution with $x \in X$.

Example 9.5 (Uncapacitated Lot-Sizing). It can be shown that solving the extended formulation presented in Section 1.6 as a linear program gives a solution with the set-up variables y_{1}, \ldots, y_{n} integral, and thus provides an optimal solution to $U L S$. So its projection to the (x, y, s) space describes the convex hull of solutions to $U L S$.

9.3 0-1 KNAPSACK INEQUALITIES

Consider the set $X=\left\{x \in B^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}$. Complementing variables if necessary by setting $\bar{x}_{j}=1-x_{j}$, we assume throughout this section that the coefficients $\left\{a_{j}\right\}_{j=1}^{n}$ are positive. Also we assume $b>0$. Let $N=\{1, \ldots, n\}$.

9.3.1 Cover Inequalities

Definition 9.6 A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_{j}>b$. A cover is minimal if $C \backslash\{j\}$ is not a cover for any $j \in C$.

Note that C is a cover if and only if its associated incidence vector x^{C} is infeasible for S.

Proposition 9.3 If $C \subseteq N$ is a cover, the cover inequality

$$
\sum_{j \in C} x_{j} \leq|C|-1
$$

is valid for X.
Proof. We show that if x^{R} does not satisfy the inequality, then $x^{R} \notin X$. If $\sum_{j \in C} x_{j}^{R}>|C|-1$, then $|R \cap C|=|C|$ and thus $R \supseteq C$. Then $\sum_{j=1}^{n} a_{j} x_{j}^{R}=\sum_{j \in R} a_{j} \geq \sum_{j \in C} a_{j}>b$ and so $x^{R} \notin X$.

