Prove the NP-completeness of the following problems. You may use any NPcomplete problems discussed in the text or in class notes to prove NP-completeness.

1. Uncapacitated facility location: Given sets $M$ and $N$ and integer $c_{i j}$ for $i \in M, j \in$ $N, f_{j}$ for $j \in N$ and $K$, is there a set $S \subseteq N$ such that $\sum_{i \in M} \min _{j \in S} c_{i j}+\sum_{j \in S} f_{j} \leq K$ ?
2. Set covering: given an $m \times n 0-1$ matrix $A$ and an integer $K$, does there exist $x \in$ $B^{n}$ such that $A x \geq 1$ and $\sum_{i=1}^{n} x_{i} \leq K$ ?
3. Matching with bonds: Given a graph $G=(V, E)$, pairwise disjoint subsets $B_{i}$ for $i=1, \ldots, p$ of $E$, and an integer $K$, does there exist a matching $M$ in $G$ such that $|M| \geq$ $K$ and, for $i=1, \ldots, p$, either $B_{i} \cap M=B_{i}$ or $B_{i} \cap M=\emptyset$ (i.e., either all the edges in $B_{i}$ are in the matching or none are)? The subsets $B_{i}$ are called bonds.
4. Minimum weight path problem (with positive and negative edge weights): Given a graph $G=(V, E)$, length $l(e) \in Z$ for each $e \in E$, integer $K$, specified vertices $s, t \in$ $V$. Is there a simple path in $G$ from $s$ to $t$ of length $K$ or less?
5. Given a directed graph $G=(V, A)$, a feedback vertex set is a subset $S \subseteq V$ such that every directed cycle of $G$ contains a vertex in $S$. Show that the feed back vertex set problem: Does $G$ have a feedback vertex set with $|S| \leq k$, is NP-complete.
