
90 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

ate 3-coloring of the interior vertices of each of the crossovers, and the
desired result follows. •

A perusal of the lists contained in the Appendix will provide many oth
er examples of restrictions that have been analyzed for graph theoretic prob
lem~. We have attempted throughout these lists to provide as much infor
matwn as possible a~out the complexity of various subproblems of each
problem. Thus the lists can be used as one source of suggestions for res
trictions that might be analyzed for a given problem. Other restrictions will
?e suggested by the context in which the problem arises. Instances arising
m a particular application will often satisfy special constraints that could
affect the complexity of the problem, e~en though these constraints might
n~t be apparent at first. In the next section we discuss a special type of res
trrction that is often of interest for problems having numerical parameters.

4.2 Number Problems and Strong NP-Completeness

prob짧魔 魔떻p~;~~h짧i~랩뀔짧쌓~~~많많 ~v며셉':-;;핍$뚫얹
!he reasons .ro~. this can be illustrated by considering the f이lowing “ dynam-
1c programming ’ approach to s。lving the PARTITION problem.

in 앓앓i~짧a꿇넓~; 라짧짧잖파Z풍짧1ii~i:.2) o~fi~때a섭 &
be equal to LaeA s(a). If B is not evenly divisible by 2, then we know J
that no subset A’드 A can possibly satisfy J

I: s(a) = I: s(a)
a EA aEA-A ’

so we can immediately respond “ no” for this instance. Otherwise, for in
tegers 1 ~ i~ n , 。~j~B/2, let t(i,j) denote the truth value of the state
띠ent:. “ there is a subset of {ai.a2, ... , a;} for which the sum of the item
sizes 1s. exactly j.” The values of all the t(i,j) can be viewed as being ar
ranged m a table, as shown in Figure 4.8.

used짧 당l~i뚫딛h짧歸C잃찮았 ~~ep~~~~짧짧p~~c;~~:e ti업풍 ~~~ ~~

總Z;歸뚫찮;,~;·뚫~~폈~ft~뚱뚫6싫~I핑폈§§
in row i has the value T if and only if either t(i-1,j) =Tor s(a) ~j and
t(i-1,j-s~a)) = T. Finally, we obseπe that, once the entire table has
been filled m, we have solved the given instance of PARTITION, because
the answer is “ yes” if and only if t(n,B/2) = T.

The reader should ha~e no difficulty in specifying an iterative algorithm
for filling in the table e띠rres, in the manner described, in time bounded by
a low order polynomial m the number of table entries (that is, polynomial

4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS 91

j
i 0 I 2 3 4 5 6 7 8 9 IO 11 12 13
1 T T F F F F F F F F F F F F
2 T T F F F F F F F T T F F F
3 T T F F F T T F F T T F F F
4 T T F T T T T F T T T F T T
5 T T F T T T T F T T T T T T

Figure 4.8 Table of t(i,j) for the instance of PARTITION for which
A= {ai,az,a3,a4,a5), s(a1) =I, s(az) =9, s(a3) =5, s(a4) =3, and
s(a5) = 8. The answer for this instance is “ yes,” since t(5,13) = T,
reflecting the fact that s(a1) + s(a2) + s(a4) = 13 =26/2.

in n B). In fact, at first glance this might even appear to give us a polyno
mial time algorithm for solving PARTITION, thus proving that P =NP and
obviating thε need for this book. Of course this is not the case. The reason
is that, by the “ conciseness” requirement for reasonable encoding schemes,
each integer s(a) would be described in the input by a string of length only
O(log s(a;)). Therefore the length of the entire PARTITION instance
would be only O(nlogB), and nB is not bounded by any polynomial func
tion of this quantity. Thus, this is not a polynomial time algorithm for
PARTITION.

Nevertheless, in view of this algorithm, it is clear that the NP
completeness of PARTITION (and its supposed intractability) depends
strongly on the fact that extremely large input numbers are allowed. If any
upper bound were imposed in advance on these numbers, even a bound
that is polynomial in Length [/}, this algorithm would be a polynomial time
algorithm for the restricted problem. (In the sequel, we will be defining the
term “pseudo-p이ynomial time algorithm” to refer to algorithms having this
property.) One might expect such a bound to be satisfied in many practical
applications.

For example, in scheduling problems where the numbers represent tas!<
lengths, extremely large numbers would be unlikely to occur because we ac
tually intend. to perform those tasks and we could not afford to do so if any
one of them required an inordinately large amount of time. In other prob
lems, where numbers represent empiritally measured quantities, limits on
the precision of measurement have the effect of limiting the range of
numbers for which our algorithm must apply.

Furthermore, a pseudo-polynomial time algorithm can be useful even
when there is no natural bound on the input numbers we expect. It will
display “ exponential behavior:' only when confronted with instances con
taining “ exponentially large” numbers, and instances of this sort might be

.
새

”j
j
i

93

Max'[ll ~ q(Max[IJ,Length[/})

All the results we state will hold for any Length and Max functions that are
polynomially related to the ones we are using.

As an example, consider the PARTITION problem, in which an in
stance I consists of a finite set A and a size- s(a) E z+ for each a EA. Any
of the following would be a suitable Length function for PARTITION:

4.2 NUMBER PROBLEMS AND STRONG NP·」COMPLETENESS

Length(/J = IA I+ l: r1og2 s(씨
a EA

Length(/] = IA I+ max {flog2 s(a>J: a EA}

rare for the application we are interested in. If so, this type of algorithm
might serve our purposes almost as well as a p이ynomial time algorithm.

Thus, the possibility of finding a pseudo-polynomial time algorithm for
an NP-complete problem involving numbers can be well worth investigat
ing. We shall see that not all such problems are like PARTITION in this
regard. For some the theory of NP-completeness can be used to show that
even a pseudo-polynomial time algorithm cannot exist unless P =NP. Sec
tion 4.2. l introduces some new terminology and lays the groundwork for
proving such “ strong” NP-completeness results. Section 4.2.2 illustrates
the proof techniques and presents our seventh “ basic” NP-complete prob
lem.

USING NP-COMPLETENtiS TO ANALYZE PROBLEMS ’ 4

---!!!il

i
--t

jj

--‘

1
f(j1

·,----i1jj

j

”
1
1
J
J
J

‘
·
‘
、
)

,
、
.

Length[/] = IA I ·rtog2 l: s(a”
a EA

Similarly, any of the f이lowing would be a suitable Max function for PAR
TITION:

Max[/] =max{s(a): aEA}

Max[/] = rel: s(a))/ IA 11
a EA

We leave for the reader to verify that any of the nine pairs of Length and
Max functions that can be chosen using these two lists is polynomially relat
ed to any of the others.

The flexibility we are allowed in choosing Length and Max functions
will enable us to avoid explicitly stating the ones we have in mind for a
problem II, since they can be inferred with sufficient accuracy from our
description of a generic problem instance. An appropriate Length function
is implied by what we consider to be a reasonable encoding scheme for the
problem, and the latter follows from our description of the generic instance
using the stan없rd conventions set forth at the end of Section 2.1. An ap
propriate Max function is implied by our specifying that certain objects in
the generic instance are numbers (in distinction to sets, sequences, graphs,
named elements, etc.). These numbers usually will be integers, and any
more complicated “ number” in an instance will be viewed as being a com
posite of one or more separate integers, as has already been done for ration
al numbers. By convention, we will take Max[/] to be the magnitude of
the largest integer occurring in I , or 0 if no integers occur in I.

One final property will be required of the functions Max and Length.
This is that, given any reasonable encoding scheme for II, there must exist
polynomial time DTMs that take as input the encoded representation of any
instance /EDn and that output the values of Length[/} and Max[IJ, writ
ten in binary notation. We need this property solely because we will be

Max[/} = l: s(a)
a EA

4.2.1 Some Additional Definitions

Our new definitions will involve subproblems obtained by placing res
trictions on the magnitudes of the numbers occurring in a problem instance.
These restrictions will be stated in terms of two encoding-independent func
tions, Length: Dn • z+ and Max: Dn• z+, which we assume to be associ
ated with any decision problem II. Although in theory these two functions
can be entirely arbitrary G.ust like encoding schemes), the significance of
what we do with them will depend on the extent to which they reflect the
following intended meanings. The function Length, as discussed in Section
2.1, is intended to map any instance I to an integer Length (/] that
corresponds to the number of symbols used to describe I under some rea
sonable encoding scheme for II. The function Max, which has not been
discussed previously, is intended to map any instance I to an integer
Max[/] that corresponds to the magnitude of the largest number in I.

The types of results we will be proving will be sufficiently general that
each will hold for a broad class of “ polynomially related" Length and Max
functions. Two Length functions, say Length and Length', for a problem II
are said to be polynomially re/aκd if there exist polynomials p and p' such
that, for all instances IE Dn,

and

Length[/] ~ p ’(Length’[/])

Length’[/] ~ p (Length[/])

We will say that the pair of functions (Length, Max) is poψnomially related
to the pair of functions (Length’, Max’) if Length and Length' are polyno
mially related as above and there exist two-variable polynomials q and q ’
such that, for all IE Dn,

Max[/] ~ q ’(Max’[/],Length’[/])

and

94 USING NP-COMPLETENEsS TO’ANALYZE PROBLEMS

considering restrictions on instances defined in terms of Length [/) and
Max[/ J, and we need to be able to decide whether or not a given string en
codes an instance meeting these restrictions. Any natural choices for
Length and Max will certainly have this property.

The definitions that follow assume that every decision problem II has
an associated Length function and an associated Max function as discussed
above. Formal precision at the language level would also require that an
encoding scheme be given for each problem II. However, it is convenient
to state the definitions at the problem level without this proviso, operating
under our st뻐dard assumptions about the use of reasonable encoding
schemes. The reader should have no difficulty in filling in the details need
ed to make these definitions precise at the language level, and it is more na
tural and informative to continue our discussions in terms of problems.

An algorithm that solves a problem II wi” be called a pseudo「polynomial
time algorithm for II if its time complexity function is bounded above by a
polynomial function of the two variables Length[/] and Max[/}. By
definition, any polynomial time algo빼m is also a pseudo-pol”iomial tim~
algorithm, because it run~ in time bounded by a polynomial in Length [/}
alone. However, we have already seen an example of a pseudo-polynomial
time algorithm that is not a polynomial time algorithm, that given for PAR
TITION. This shows that, even though an NP-completeness result for a
problem !1 rules out the possibility of solving II with a ~olynorr삐 time al
gorithm (unless P =NP). it does not rule out the possibility of solving II
with a pseudo-polynomial time algorithm.

To be more precise, an NP-completeness result does not necessarilv
rule out the possibility of solving ~ with a pseudo-~olynomial time algι
rithm. Many of the decision problems we have considered so far have the
property that Max[/ J is itself bounded by a ~olynomial function of
Length [/J, and for these problems there is no distinction between polyno
mial time algorithms and pseudo-polynomial time algorithms. For example,
the only number that occurs in an instance of CLIQUE is the bound J. and
J is constrained to be no larger than the number -of vertices in the given
graph. SATISFIABILITY involves no numbers at all, except for the sub
scnpts on variables and literals, and these can be ignored because they actu
ally are “ names” rather than “ numbers.” (Our conventions on encoding
schemes ensure that such numerical “ names” will always be polynomiillly
bounded in terms of Length[/).) The issues we are concerned with here
are not relevant for problems like this, so let us give a name to the type of
problem for which these issues are relevant. We say that a problem II is a
number problem if there exists no polynomial p such that
Max[/J ~{'(Length[/}) for all IE Dn. The only number problem among
our six basic NP-complete problems is PARTITION.

As an immediate consequence of this definition, we can make the fol
lowmg observation:

4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS 95

「η
p
j

ι

Observation 4.1 If II is NP-complete and II is not a number problem, then
II cannot be solved by a pseudo-polynomial time algorithm unless P =NP.

Thus, assuming that P 츄NP, the only NP-complete problems that are po
tential candidates for being solved by pseudo-polynomial time algorithms
are those that are number problems.

For any decision problem II and any polynomial p (over the integers),
let IT0 denote the subproblem of II obtained by restricting IT to only those
instances I that satisfy Max[/J ~p(Length[/)). Then IT,, is not a number
problem. Furthermore, if II is solvable by a pseudo-polynomial time algo
rithm, then IIP must be solvable by a polynomial time algorithm. Given
any input string x, all we need do is check that x encodes an instance I
satisfying Max[/)~ p(Length[/ J) and, if so, apply the pseudo-polynomial
time algorithm for II to I. By our assumption that Max[/) and Length[/]
can be computed in polynomial time, the required inequality can be checked
in polynomial time. By the definition of pseudo-polynomial time algorithm,
the algorithm for II will be a polynomial time algorithm for the instances
that satisfy this inequality. This motivates us to 않II a decision problem II
NP-complete in the str01쟁 sense if II belongs. to NP and there exists a polyno
mial p over the integers for which IIP is NP-complete. In particular, if II is
NP-complete and II is not a number problem, then II is automatically NP
complete in the strong sense.

We then have the f이lowing generalization of Observation 4.1:

Observation 4.2 If II is NP-complete in the strong sense, then II cannot be
solved by a pseudo-polynomial time algorithm unless P=NP.

This second observation provides the means for applying the theory of
NP-completeness to questions about the existence of pseudo-polynomial
time algorithms. We know that PARTITION cannot be NP-complete in the
strong sense, because it can be solved by a pseudo-polynomial time algo
rithm. However, we have not yet seen any examples of number problems
that are NP-complete in the strong sense. This situation will be rectified in
the next section, where we illustrate how strong NP-completeness results
can be proved.

4.2.2 Proving Strong NP-Completeness Results

The most straightforward way to prove that a number problem II is
NP-complete in the strong sense is simply to prove for some specific poly
nomial p that IIp is NP-complete. For e?(am~le, the TRAVELING SALES
MAN problem (TS) defined in Section 2.1 is a number problem because
there are no constraints on the values of either the intercity distances d(i,j)
or the bound B. We proved TS NP-complete by transforming HAMIL-

96 USING NP-COMPLETENESS TO ANALYZE PR-OBLEMS

TO NIAN CIRCUIT to it. Moreover, the instances of TS created by this
transformation all have intercity distances equal to l or 2 and a bound B
equal to the number m of cities. Thus if we take Max(/] to be the larger
of B and the longest intercity distance, and we take Length [/] to be
m + flog2Bl + L flog2 d(i ,j)], then all the instances created by this transfor-

i,j

mation satisfy the bound

Max[/] ~ Length[/]

In other words, this transformation actually shows that the subproblem of TS
made up of all those instances satisfying the above inequality is itself NP
complete. It follows that TRAVELING SALESMAN is NP-complete in the
strong sense.

In contrast, the NP-completeness proofs for KNAPSACK, MUL
TIPROCESSOR SCHEDULING, and SEQUENCING WITHIN INTER
V ALS, described in Section 3.2, all leave open the possibility that these
problems can be solved by pseudo-polynomial time algorithms. It turns out
that KNAPSACK can be solved in pseudo-polynomial time, using a dynam
ic programming approach similar to that we used for PARTITION, as de!
ineated in [Dantzig, 1957). All pseudo-polynomial time algorithms known
to us are based on similar techniques, and we refer the reader to [Horowitz
and Sahni, 1976), [Lawler, 1977al, [Lawler and Moore, 19691, and [Sahni,
1976) for illustrations of these techniques.

The problems MULTIPROCESSOR SCHEDULING and SEQUENC
ING WITHIN INTERVALS, however, do turn out to be NP-complete in
the strong sense. In order to show this, it is useful to have a number prob
lem that is NP-complete in the strong sense and that is somewhat “ more
numeric" than any we have seen so far. Such a problem is provided by our
seventh “ basic” NP-complete problem, 3-PARTITION, which is defined as
follows:

3-PARTITION
INSTANCE: A finite set A of 3m elements, a bound BEZ+, and a “ size”
s(a)EZ+ for each aEA, such that each s(a) satisfies B/4<s(a)<B/2
and such that La EA s(a) = m B.
QUESTION: Can A- be partitioned into m disjoint sets S1'S2, ... , Sm such
that, for l ~ i ~ m, Laes; s{a) = B? (Notice that the above constraints on
the item sizes imply that every such S; must contain exactly three elements
from A.)

We prove that 3-PARTITION is NP-complete in the strong sense in
two steps, first proving that the refated 4-PARTITION problem is NP
complete in the strong sense. 4-PARTITION is identical to 3-PARTITION
except that the set A contains 4m elements and each s(a) must satisfy

4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS
97

B/5 < s(a) < 8/3. Thus each set in the desired partition will contain ex

actly four elements.

Tl m 4.3 4-PARTITION is NP-complete in the strong sense.

짧 灣빽헬 麗평 polynomial function of Length[/]. In particular, taking Max[/] to be
{s(a):aEA} we shall show that 4-PARTITION is ~P-complete even

when restricted to instances I with Max[/ 1 ~ 216· IA 14. \
Let W= {w"w2, ...• wq}. X= {x1>x2 •...• xq}, Y= lv1>Y2· · · · ,yql.

andM 드 WxXx Y deno없n arbitrary instance of 3DM. We may assum;
without loss of generality that IMI ~ q. Our corresponding instance'" ot
4-PARTITION has IA I =4IMI elements, one for each occurrence ot a

me밸싫짧앓넓認많꽁끓뚫앓뀔 짧~;~망꾀I앞 denot-
ed by z[ll, z(2]. .. , z(N(z)} where N(z) denotes the number of triples
from M in which z occurs. W~ shall regard z[l) as being the “ actual” ele
ment corresponding to z, and zl2l through z(N(z)] as being the “ dummy”
elements corresponding to z. The sizes of these elements depend on which
one of W‘ x. or y contains z and on the index of z within that set. These

(w;[l]) = IOr4+ir+l I~i~q
s(w;[/)) = Ilr4+ir+I I~i~q, 2~f~N(w;)

(x[l])= 10r4+jr2+2 l~j~q
s(셰/)) = llr4+ jr2+2 l~j~q. 2~/~N(xj)

s(yA [l]) = IOr4+kr3+4 I~k~q
s(y:[/)) = 8r4+kr3+4 l~k~q. 2~/~N(yk)

The single element corresponding to a particular triple
m, = (w;, xj• yk) E M is denoted by u1, and its size depends on the indices of
its members as follows:

s(u1) = IOr4-kr3-jr2-ir+8

Notice that, if we add to s(u1) the sizes of three elements that corre얀ond
to w;, Xj, and Yk• respectively, then the total will be equal to 40r + 15
whenever all three are “ actual” elements or whenever all three are
“ dummy” elements. We choose this number to be our bound B, that is,

98 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

B = 40r4+ 15·fA 13+ 15

The reader should have no difficulty verifying that this is a polynomial
transformation, that the size of each element is strictly between B/3 and
B/5, and that the sum of all the element sizes is IMf·B, as required.
Furthermore, we observe that the size of each element is bounded above by
12r4 ~ 12·8샤A 14 < 216· IA 14. Thus all that remains to be done to prove
that 4-PARTITION is NP-complete in the strong sense is to show that the
desired 4-partition exists if and only if M contains a matching.

First, suppose that M'드 M’ is a matching. The corresponding 4-parti
tion is made up of I Ml 4-sets, each containing a 씨, a wi [·], an x; [.}, and a
yk[·J, where (w” x1,yk) = m1 EM. If m1 EM’, we group u1 with
wi[l), 진 [I}, and YkBJ. If m1 E M-M', we group Ui with “ dummy” ele
ments corresponding to w” xj, and Yk ’ It is not hard to see that there are
enough dummy elements so that this can be done, and by our previous
comments the sizes of the four elements in each set will sum exactly to B.
Thus we have our required 4-partition.

Now suppose we are given a 4-partition of the required form. Consider
any 4-set in this 4-partition. By successively considering the sum of the ele
ment sizes modulo r, r2, r3, r4, and r5, we shall show that this 4-set must
contain one element corresponding to each of the three members of that tri
pie, all three being “ actual” elements or all three being “ dummy” ele
ments. First, since r > 4·8 = 32, we kn。w that the sum modulo R of the
sizes of the four elements, which must equal B(mod r) = 15, is the same as
the sum of the item sizes when each is taken modulo r beforehand. The
only way these can sum to 15 is for the 4-set to contain one element that
corresponds to a member of W, one that corresponds to a member of X,
one that corresponds to a member of Y, and one that corresponds to a tri
pie from M. Let w” 잔, and Yk denote the corresponding members of
W, X, and Y, and let m1 = (wi” Xj’, Yk ’) denote the corresp_onding triple
from M. Then the sum of the element sizes modulo ,i must equal
((i-i ’)r+I5)(modr2) and, since (i-i ’) r + 15 < r2, we must have

B(mod r2) = 15 = (i-i ’)r+ 15

It follows from this that i = i'. Similarly, since (j-j ’) r2+15 < r3, we
must have

B(modr3) = 15 = (j-j ’) r2+15

and hence j = j ’, and , since (k-k ’)r3+15 < r4, we must have

B(mod r4) = 15 = (k-k ’) r3+15

and hence k = k ’. Thus wi , 작,and Yk are indeed the three members of the
triple m1, and we know that the coefficient of r4 in the su~ of the element
sizes is simply the sum of the individual coefficients for r4. Our choice of
these coefficients in the construction then guarantees that the only way for

4.2 NUMBER PROBLEMS AND STRONG NP"COMPLETENESS
99

them to sum to 40 is for all three elements to be “ actual” elements or for

all t짧 %앓 짧짧짧않딸밸칭ual” elements, on ”/ u x u y, must therefore be contained in q of our given 4-sets, each of
these 4-sets consisting of one element corresponding to a triple from M and
the three “ actual” elements corresponding to the members of that triple.
Those q triples from M provide the desired matching. •

갑:;;.e갤 $ $짧텀I잖~~hi!t뱃;~~i옆힘;t품펌짧~gt양짧 We shall
tran~form the subproblem of 4-PARTITION in which all instances satisfy

떠앓 앓압;짧t} 낌e~I싫 I~。없讓~~~I짧~~짜젊댐많많nt많 필~~~많
number of elements

Let A= {a1>ai". ... , a4n}, bound B, and item sizes s(a) satisfyin~

앓a앓(양 Z짧녀위o~~a않/원$$。앓i잃 맴짧짧t많3팔A웰i녕하
will have 24n2 - 3 n elements, one for each element from A, two for each
pair of ele뼈nts from A, and 8n2-3n “fill~r” 만~ments.

Corresponding to each element aiEA ts a regular" element wi, with

size defined by
s’(w) = 4·(5B+s(a))+I

where we use s’(·) to denote the size function in our 3-P ARTITION
instance. Corresponding to each pair of elements a”와 EA we have two
“ pairing” elements, u[i,j] and u[i,jl, with sizes defined by

s’(u[i,JD = 4· (6B-s(a) -s(a1)) +2

s’(U[i,JD = 4·(5B+s(a)+s(a1))+2

Finally, for 1~k~8n2 -3n we have a “ filler” element u: with size

S’(땅따뚫in빨e짧~~r~짧I~잃$짧핍I짧띔總 i~總i씁hat
this is a polynomial transformation, that the size of every element is strictly:
between B'/4 = 16B +I and Bη = 32B +2, and that the sum of all 띠e
element sizes is equal to (8n2- n) B’. Furthermore, since the elements m
A are constrained to have sizes no larger than 216·IA 14. the sizes in th~
3-PARTITION instance will also satisfy a polynomial bound in terms ol
I A j, hence in terms of the number of elements in the constructed instance
I ’, hence in Length [/l. Thus, to complete our demonstration that 3-PAR
TITION is NP-complete in the strong sense, we need only show that a
3-partition exists for the constructed instance if and only if a 4-partition
exists for the original instance.

100 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

First, suppose that we have a 4-partition for the original instance. The
corresponding 3-partition is constructed as follows: Arbitrarily divide each
4-set {a;,aj,ak,a1} into two 2-sets, say {a;.a사 and {aha,}. Our 3-partition
will then contain the two 3-sets { w,, 까, u[i,jJ} and {wk,깨,u[i,jl}. (N。tice
that we could just as well have used u[k,l] instead of u[i,j] and u[k‘/]
instead of 파i,j}.) The sizes of the elements in each of these 3-sets su비s
to B ’ since s(a;) + s(a} + s(ak) + s(a1) = B. Doing this for each of the n
given 4-sets, we obtain 2n 3-sets that contain all of the “ regular” elements
and n matched pairs of “ pairing” elements. This leaves 8n2-3n matched
pairs of “ pairing” elements and 8n2-3n “ filler” elements. Since the sum
of the sizes of two matched “ pairing” elements is 44B +4 = B ’ -20B ‘

each such matched pair can be grouped with a remaining one of the “ filler';
elements to complete the desired 3-partition.

Now suppose that we are given a 3-partition for the constructed
instance. By considering the element sizes modulo 4 we see that no 3-set
can contain an odd number of “ regular” elements, no 3-set can contain
three “ pairing” elements, and no 3-set can contain two “ regular” elements
and a “ filler” element. It follows that the given 3-partition is made up of
2n 3-sets that each c_ontain two “ regular” elements and one “ pairing” ele
ment, along with 8n2-3n 3-sets that each contain two “ pairing” elements
and one “ filler” element. Consider any one of the latter type of 3-sets, and
let u [i ,j) (or ii [k, /)) be one of the two “ pairing” elements in that s~t. If
the other pairing element in this 3-set is not u[i,j) (or u[k,/)), then it
must havε the same size as that matching element and so can be inter
changed with it to obtain an equivalent 3-partition. This operation can be
repeated until we obtain a 3-partition in which every “ filler” element occurs
together with a matched pair u [i,j], il[i,j}. Thus, any “ pairing” element
that occurs with two “ regular” elements in this 3-partition is such that its ;‘match” also occurs in such a 3-set. This divides the 3-sets containing
‘regular” elements into n pairs of 3-sets. Since the two “ pairing” ele-

ments m each such pair of 3-sets are matched, their sizes sum to 44B + 4 ‘

and hence the sizes of the four “ regular” elements must sum to 84B + 4.
This implies that the corresponding four elements from A form a 4-set of
elements whose sizes sum to B. Therefore these n pairs of 3-sets provide
the required 4-partition. •

Notice that this last transformation, if viewed as a transformation from
the general 4-PARTITION problem to 3-PARTITION, would not be
enough to prove strong NP-completeness for 3-PARTITION. We needed to
restrict our attention to an NP-complete subproblem of 4-PARTITION in
which max {s(a)} was polynomially bounded. However, it is easy to see
that the particular polynomial bound that we chose was not essential.
Indeed, it would be convenient if we could operate with transformations
like this without needing to go into the details of the subproblems and the
particular polynomials involved. This can be done using the following
definition and lemma.

4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS 101

Let II and II' denote arbitrary decision problems with instance sets Du
and Du’, “ yes” sets Yu and Yπ, and specified functions Max, Length,
Max’, and Length’, respectively. A pseudo-polynomial traniformation from II
to n’ is a function f: Du • Du’ such that

(a) for all /EDu, /E Yu if and only if /(/)E Yu”

(b) f can be computed in time polynomial in the two variables
Max[/] and Length[/],

(c) there exists a polynomial q 1 such that, for all IE Du,

q1(Length’[f (/)]) ~ Length[/]

(d) there exists a two-variable polynomial q2 such that, for all IεDu,

Max’(/(/)) ~ q2(Max[/],Length[/])

Lemma 4.1 If II is NP-complete in the strong sense, n’ENP, and there
exists a pseudo-polynomial transformation from rr to H’, then n’ is NP
complete in the strong sense.
Proof: Let f be such a pseudo-polynomial transformation, with functions
q1 and q2 as specified in the definition. We can 잃sume without loss of gen
erality that q1 and q2 have only positive integer coefficients, since they can
be so modified without decreasing their values‘ Because II is NP-complete
in the strong sense, there is some polynomial p such that ITP is NP
complete. Furthermore, we can choose such a p that has only positive
integer coefficients, because if Po is any polynomial over the integers satisfy
ing p0(x) ~ p(x) for all x, then ITP0 will contain all the instances of ITP and
hence must be NP-complete if ITP is. Let jJ be the polynomial defined by

p(x) = q2(p(q1(x)),q1(x))

We claim that the function f, when restricted to instances of ITP, becomes
a polynomial transformation from IIP to II;, thus proving that rr; is NP
complete. First let us see that eveη instance I of Iln is mapped by f to an
instance of 팎. Using the definition of Ilp and the ·inequalities satisfied by
qi and q2, we have, for each instance I of IIP,

Max’[/(/)] ~ q2(Max[/],Length[/])

~ q2(p(Length[/]), Length[/])

~ q2(p(q1 (Length’[f (l)))) ,q1 (Length’[f(l)]))

= p(Length’[f(l)])

Thus/(/) is an instance of II{ Conditions (a) and (b) of the definition of
pseudo-polynomial transformation, along with the fact that every instance I
of ITP satisfies Max(/]~ p(Length[/)), then imply immediately that f
meets the remaining requirements to be a polynomial transformation.

U3JNv NP-COMPLETENESS TO ANALYZE PROBLEMS

갚;;~; s앓~~ ~P-complete, and it f이lows that π is NP-complete in the

This !em띠a frees us 딴m having to de싫 with partic비ar su
up when prov1디g strong NF complet~ness results, a great convenience since
we are rarely mtere~ted in identify1맨 the specific polynomial involved.
However, the complicated definition of pseudo-polynomial transformation
migh~ a?pear to be a rather for띠idable obstacle to using this approach. In

짧h~ l하·~~~짧u~앓뀔넓t옆짧 ~-~:~많 ~~;뱉o:n (성r펴n짧nt!엽갑.~~찮
t때ns띠rmat1on, and con_dition (b) is almost identical to the other but allows

져a죄; 밍~r짧r~e~'않1!n~~~ $맘%짧t짧~~;It~~:~~~댐많~~s~~짧io~
歸짧혔;t~짧;鐵뿔歸;원짧總~d선~~~짧~:~!;;魔갱
~~~s~닙뚫짧 ~~~짧닮v~~텀s~~~앓ow up exponentia웹쁨짧파양따n나앓 

~s a first example, the construction we used to prove Theorem 4.4 can 

隨짧찮많편웰편짧짧떻짧F옳짧$짧짧i 
짧뚫혔첼;聽힌1뿔I~f퉁£뚫~~歸짧뿔:.~o깅멜:m입=~et~~ 
끓~:;앓££ SEQU따JENCING WITH 

~:~~ 
Let A= I • ‘ 

織뽑없g;폈넙양繼짧#靈뚫$$짧~~~;e~~쐐짧j섬t鐵 
T= AU ft;:l~i<mJ 

JI ift=t,,l~i<m 
l(t) = ’ 

NUMBER PROBLEMS AND STRONG NP-COMPLETENESS 103 

liB+ i-1 if t= ‘, l~i<m 
r(t) = f 0 if t =와EA 

I iB+ i if t= t;, I~i<m 
d(샤 = lmB+m-1 ift=ajEA 

This transformation clearly can be performed in time polynomial in the 
input length alone, and the length of the constructed instance is polynomi
ally related to the length of the given instance, so conditions (b) and (c) of 
the definition of pseudo-polynomial transformation are met. Furthermore, 
the largest number in the constructed instance is m B+ m -1, so condition 
(d) is met. All that remains to be shown is that condition (a) is met, just as 
in our usual NP-completeness proofs. 

Any sequence that satisfies the specified constraints must execute each 
task t;. l~i<m, from time iB+i-1 to time iB+i, as shown in Figure 
4.9. This leaves m separate blocks of time, each of length exactly B, and 
since this is just enough time in total to accommodate all the tasks t EA, 
each block must be completely filled. These blocks therefore play the same 
role as the sets Si.S2, ... , Sm in the desired partition of A. It follows that 
the desired sequence exists if and only if the desired partition exists for the 
given 3-PARTITION instance. 

B B B 
~‘-----、 ,----ι‘-----、 r--”‘----、

I r, I I t2 I … |“-1 I 
0 B B+l 2B+1 2B+2 ηrB+m-1 

Figure 4.9 The form required of a sequence meeting the constraints of an instan않 
of SEQUENCING WITHIN INTERVALS obtained by transforming an 
instance of 3-PARTITION in the proof of Theorem 4.5. 

Thus condition (a) is met, and we indeed have given a pseudo
polynomial transformation from 3-P ARTITION to SEQUENCING WITHIN 
INTERVALS. By Lemma 4.1, this proves that the latter problem is NP
complete in the strong sense. • 

We suggest as an exercise that the reader try to construct a similar 
transformation from 3-PARTITION to the MULTIPROCESSOR 
SCHEDULING problem defined in Section 3.2.L Our lists of NP-complete 
problems contain a number of other problems that are proved NP-complete 
in the strong sense with comparable ease, merely by slightly modifying ear
lier proofs that used PARTITION to use 3-PARTITION instead. The 
straightforward nature of these modifications is indicative of the usefulness 
of 3-PARTITION. 



104 USING NP-COMPLETENESS T。 ANALYZE PROBLEMS 

We conclude this section with an example of how a pseudo-polynomial 
transformation from 3-PARTITION can be useful for provin용 an ordinary 
NP-completeness result for a problem that is not a number problem. In 
fact, this problem will involve no numbers at a”! 

Recall the SUBGRAPH ISOMORPHISM problem defined in Section 
2.1: Given two graphs G and H, is H isomorphic to a subgraph of G? We 
proved this problem NP-complete in Section 3.2.l simply by noting that it 
contains CLIQUE as a special case. However, there is one important sub
problem of SUBGRAPH ISOMORPHISM that is known to belong to P. 
This is the problem SUBTREE ISOMORPHISM in which both G and H are 
required to be trees (a tree is a connected graph that contains no cycles). A 
polynomial time algorithm for this subproblem has been obtained by 
Edmonds and Matula [1976] (see also [Reyner, 1977]). 

Our philosophy of trying to narrow in on the “ boundary” between easy 
and hard subproblems of an NP-complete problem then suggests the follow
ing question: What if only one of G and H is required to be a tree? In one 
case the answer is immediate. The version in which only H is required to 
be a tree contains HAMIL TO NIAN PATH as a subproblem and hence is 
NP-complete. The case in which only G is required to be a tree is more 
interesting. We know that H cannot be a subgraph of such a G unless it. is 
acyclic (contains no cycles), but this does not imply that H must be a tree, 
since it might be disconnected. In general, an acyclic graph is called a 
forest, with only connected forests being trees (see Figure 4.10). 

냥J 
γ 
\// 

G F T 

Figure 4.10 Examples of a graph G, forest F, and tree T. G is a graph but not a 
forest, and F is a forest but not a tree. F is not a subforest of T, but 
each tree in F is a subtree of T. 

Let us give the name SUBFOREST ISOMORPHISM to the subproblem 
of SUBGRAPH ISOMORPHISM in which G is required to be a tree and H 
is required to be a forest. Despite the similarity of this problem to the poly
nomially solvable SUBTREE ISOMORPHISM problem, we have the follow
ing theorem: 

촬F 4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETEN앓S 105 

§ 

Theorem 4.6 SUBFOREST ISOMORPHISM is NP-complete. 
Proof: Membership in NP follows from that for SUBGRAPH ISOMOR
PHISM. We shall give a pseudo-polynomial transformation from 3-PAR
TITION to SUBFOREST ISOMORPHISM, and the result will follow by 
Lemma 4.1. 

Let A= {a1>a2 •... ,am), BEZ+, and s(a1),s(a2), ... ,s(am) in z+ 
constitute an arbitrary instance of 3-PARTITION. The corresponding 
instance of SUBFOREST ISOMORPHISM is illustrated in Figure 4.11. 

~↑} B+~ vertices 

~ “ Star” 

H 

Figure 4.11 The tree G and forest H corresponding to an instance of 
3-PARTITION in the proof of Theorem 4.6. 

The tree G consists of m chains of 8+1 vertices each, all attached at 
one end to an additional common vertex. The forest H consists of 3m + 1 
trees, including one “ star” on m + I vertices and 3 m chains, each 
corresponding to a particular element a E A and having s (a) vertices. 

Any isomorphism from H to a subgraph of G must map the center of 
the star to the single high-degree vertex of G. The m neighbors of the 
center of the star in H then must be mapped to the m neighbors of that 
vertex in G. This leaves m chains, each of B vertices, in G to which the 
remaining 3m chains in H must be mapped by the isomorphism. The map
P,ing of these chains from H to the remainder of G corresponds to a parti
t1on of the elements of A into m sets and, by our construction, can be com
pleted if and only if the elements in each set have sizes summing exactly to 
8. Thus the required isomorphism from H to a subgraph of G will exist if 
and only if the required 3-partition of A exists. 

This confirms condition (a) of a pseudo-polynomial transformation. It 
ts easy to see that this transformation can be performed in time polynomial 
in m and B, so condition (b) is satisfied. The total number of vertices in G 



U:SINU Nl'-COMPLETENESS TO ANALYZE PROBLEMS 

and H is 2(m B +I), so condition (c) is satisfied. Finally, there are no 
numbers in the constructed instance, so condition (d) holds. Thus by Lem
ma 4.1, SUBFOREST ISOMORPHISM is NP-complete in the strong sense, 
which implies that it is NP-complete in the ordinary sense as well. • 

4.3 Time Complexity as a Function of Natural Parameters 

So far in this chapter we have motivated the study of subproblems 
mainly on the basis of the fact that in practice it is often the subproblem, 
rather than the general problem, that we are called upon to solve. Having 
mapped the boundary between the NP-complete subproblems and the poly
nomial time solvable subproblems, one is better prepared to focus the 
search for algorithms in potentially profitable directions when such a sub
problem arises. 

Results concerning subproblems also can be used to help guide the 
search for algorithms that solve the general problem. If the general prob
lem is NP-complete, we know that an exponential time algorithm will be re
quired (unless P =NP), but there are a variety of ways in which the time 
complexity of an algorithm can be “ exponential,” some of which might be 
preferable to others. This is especially evident when, as is customary in 
practice, we consider time complexity expressed in terms of natural problem 
parameters instead of the artificially constructed “ input length." 

For example, consider the MULTIPROCESSOR SCHEDULING prob
lem of Section 3.2.1. Here a collection of natural parameters might consist 
of the number n of tasks, the number m of processors, and the length L of 
the longest task. The ordinary NP-completeness result for this problem 
proved in Section 3.2.1 implies that, unless P=NP, MULTIPROCESSOR 
SCHEDULING cannot be solved in time polynomial in the three parame
ters n, m, and log L. However, one can still ask whether it is possible to 
have an algorithm with time complexity polynomial in mn and log L, or 
polynomial in nm and log L, or polynomial in n, m, and L, or even poly
nomial in (n L) m. 

Our complexity results for subproblems shed some light on these ques
tions. The original NP-completeness result for MULTIPROCESSOR 
SCHEDULING actually shows that the subproblem in which m is restricted 
to the value 2 is NP-complete, thus ruling out an algorithm polynomial in 
nm and log L (unless P =NP), since such an algorithm would be a polyno
mial time algorithm for this subproblem. Our subproblem results do not 
rule out an algorithm polynomial in mn and log L, and indeed exhaustive 
search algorithms having such a time complexity can be designed. Analo
gously, the strong NP-completeness result for MULTIPROCESSOR 
SCHEDULING claimed in Section 4.2.2 rules out an algorithm polynomial 
in n, m, and L (unless P =NP). It leaves open the possibility of an algo
rithm polynomial in {n L)m (which would give a pseudo-polynomial time 

휩F 헬
팽
〕
”
a
4
냐g
j
3
끼
뎌
 

4.3 TIME COMPLEXITY AS A FUNCTION OF NATURAL PARAMETERS 107 

algorithm for each 꺼xed value of m), and again such an algorithm can be 
shown to exist. 

Thus by considering the subproblems obtained by placing restrictions 
on one or more of the natural problem parameters, we obtain useful infor
mation about what types of algorithms are possible for the general problem. 
Care must be taken to ensure that the parameters we choose are sufficiently 
representative of instance size that Length [/] can be expressed as a polyno
mial function of them (so that the class of polynomial time algorithms for 
the problem is identical to the class of algorithms polynomial in the selected 
parameters), but otherwise we may choose whatever parameters seem most 
natural and relevant. A general NP-completeness result then will imply that 
the problem cannot be solved in time polynomial in all the chosen parame
ters, and information obtained by restricting these parameters can be mean
ingful with regard to other types of general algorithms. 

Although questions concerning strong NP-completeness and pseudo
polynomial time algorithms are especially relevant here, analyses of this 
type also can be applied fruitf비ly to problems that are not number prob
lems, since all problems have natural numerical parameters like sizes of 
sets, values of bounds, etc. Thus, for instance, the NP-completeness of 
3-SATISFIABILITY rules out the possibility (unless P =NP) of an algo
rithm for SATISFIABILITY that runs in time polynomial in (mn)M, where 
m is the number of clauses, n is the number of literals, and M is the max
imum number of literals per clause, whereas for the CLIQUE problem an 
nD algorithm is possible, where n is the number of vertices and D is the 
maximum vertex degree. Thus the theory of NP-completeness can be used 
to guide our search not only for polynomial time algorithms, but for ex
ponential time algorithms as well. 


	current

