90 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

ate 3-coloring of the interior vertices of each of the crossovers, and the
desired result follows. =

A perusal of the lists contained in the Appendix will provide many oth-
er examples of restrictions that have been analyzed for graph theoretic prob-
lems. We have attempted throughout these lists to provide as much infor-
mation as possible about the complexity of various subproblems of each
problem. Thus the lists can be used as one source of suggestions for res-
trictions that might be analyzed for a given problem. Other restrictions will
be suggested by the context in which the problem arises. Instances arising
in a particular application will often satisfy special constraints that could
affect the complexity of the problem, even though these constraints might
not be apparent at first. In the next section we discuss a special type of res-
triction that is often of interest for problems having numerical parameters.

4.2 Number Problems and Strong NP-Completeness

Nowhere does the need for analyzing subproblems of an NP-complete
problem have more import than in the case of problems involving numbers.
The reasons for this can be illustrated by considering the following ““‘dynam-
ic programming’’ approach to solving the PARTITION problem.

Let the set 4 ={aj,a,,...,a,} and the sizes s(ay), s(ay, ..., s(a,)
in Z* constitute an arbitrary given instance of PARTITION. Define B to
be equal to ¥ ., s(a). If B is not evenly divisible by 2, then we know
that no subset 4'C 4 can possibly satisfy

2 s@= Y s

a€d’ a€A-4'
so we can immediately respond “‘no’’ for this instance. Otherwise, for in-
tegers 1<i<n,0<,/<B/2, let t(i,/) denote the truth value of the state-
ment: “there is a subset of {ay,a,, . . ., a,} for which the sum of the item
sizes is exactly j.> The values of all the ¢(i,/) can be viewed as being ar-
ranged in a table, as shown in Figure 4.8.

The crux of the approach lies in the very simple procedure that can be
used for filling in the table entries. It proceeds row by row, from top to
bottom. For the top row, all we need do is observe that ¢(1,/) =T if and
only if either j=0 or j=s(a,). Each subsequent row is filled in by using
the entries in the previous row. For 1<ig<n, 0<i<B/2, the entry ¢(i,f)
in row 7 has the value T if and only if either t(i—1,/)) =T or s(q) <, and
t(i—1, j~s(a)) =T. Finally, we observe that, once the entire table has
been filled in, we have solved the given instance of PARTITION, because
the answer is “‘yes” if and only if +(n,B/2) = T.

The reader should have no difficulty in specifying an iterative algorithm
for filling in the table entries, in the manner described, in time bounded by
a low order polynomial in the number of table entries (that is, polynomial

4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS 91

e I I T T 1
m{m|m|m|m||~
-l-q'n'n-nf»
== m|m|m|s
w3 =| = m | |
=3 w3 =3 | | on
m|m|m| | mi|
3| =3 m|m| oo
|| =] = mloe
3| w3| | 3|
=|m|m|m|m
w|=imim|m
== |mim

N B W] =l
e e T T |)

Figure 4.8 Table of t(i,j) for the instance of PARTITION for which
A=la,a;,a3,a4,a5}, s(a) =1, s(a2)=9., s(a;),=5: s(ag =3, and
s(as) =8. The answer for this instance is “‘yes,” since #(5,13)=T,
reflecting the fact that s(a;) + s(a;) +s(ay) =13=26/2.

in nB). In fact, at first glance this might even appear to give us a polyno-
$i£ ti)me algorithm for solving PARTITION, thps proving that P=NP and
obviating the need for this book. Of course this is not the case. The reason
is that, by the ‘‘conciseness’’ requirement for‘ reasonable epcodmg schemes,
each integer s(a;) would be described in the mput‘ by a string of length only
O(log s(a;)). Therefore the length of the entire PARTITION instance
would be only O(nlog B), and n B is not bounded b){ any polynomial func-
tion of this quantity. Thus, this is not a polynomial time algorithm for

TITION.

PARNevertheless, in view of this algorithm, it is clear 'tt}at the NP-
completeness of PARTITION (and its supposed intractability) depends
strongly on the fact that extremely large input numbers are allowed. If any
upper bound were imposed in advance on these numbers, even a bopnd
that is polynomial in Length [/], this algorithm would be a polynomlgl time
algorithm for the restricted problem. (In the sequel, we WI}I be defm_mg thg
term ‘‘pseudo-polynomial time algorithm™ to refer tq algon'thms having t'hlS
property.) One might expect such a bound to be satisfied in many practical
applications.

For example, in scheduling problems where the numbers represent task
lengths, extremely large numbers would be unlikely to occur because we ac-
tually intend to perform those tasks and we could not aﬁ’ord to do so if any
one of them'required an inordinately large amount of time. .Ip oth_er .prob-
lems, where numbers represent empirically measured quantities, limits on
the precision of measurement have the effect of limiting the range of
numbers for which our algorithm must apply.

Furthermore, a pseudo-polynomial time algorithm can be useful even
when there is no natural bound on the input numbers we e?xpect. It will
display ‘‘exponential behavior!” only when confronted wm? instances con-
taining ‘‘exponentially large’”> numbers, and instances of this sort might be

vz : USING NP-COMPLETENESS TO ANALYZE PROBLEMS

rare for the application we are interested in. If so, this type of algorithm
might serve our purposes almost as well as a polynomial time algorithm.

Thus, the possibility of finding a pseudo-polynomial time algorithm for
an NP-complete problem involving numbers can be well worth investigat-
ing. We shall see that not all such problems are like PARTITION in this
regard. For some the theory of NP-completeness can be used to show that
even a pseudo-polynomial time algorithm cannot exist unless P=NP. Sec-
tion 4.2.1 introduces some new terminology and lays the groundwork for
proving such ‘‘strong” NP-completeness resuits. Section 4.2.2 illustrates
the proof techniques and presents our seventh ‘‘basic’> NP-complete prob-
lem.

4.2.1 Some Additional Definitions

Our new definitions will involve subproblems obtained by placing res-
trictions on the magnitudes of the numbers occurring in a problem instance.
These restrictions will be stated in terms of two encoding-independent func-
tions, Length: Dp— Z* and Max: Dy— Z*, which we assume to be associ-
ated with any decision problem II. Although in theory these two functions
can be entirely arbitrary (just like encoding schemes), the significance of
what we do with them will depend on the extent to which they reflect the
following intended meanings. The function Length, as discussed in Section
2.1, is intended to map any instance I/ to an integer Length[/] that
corresponds to the number of symbols used to describe / under some rea-
sonable encoding scheme for II. The function Max, which has not been
discussed previously, is intended to map any instance / to an integer
Max[7] that corresponds to the magnitude of the largest number in 7.

The types of results we will be proving will be sufficiently general that
each will hold for a broad class of ‘‘polynomially related’’ Length and Max
functions. Two Length functions, say Length and Length’, for a problem I1
are said to be polynomially related if there exist polynomials p and p’ such
that, for all instances /€ Dy,

Lengthl/] < p'(Length’'[I])
and
Length'[/] < p (Lengthl7])

We will say that the pair of functions (Length, Max) is polynomially related
to the pair of functions (Length’, Max’) if Length and Length’ are polyno-
mially related as above and there exist two-variable polynomials ¢ and ¢’
such that, for all /€ Dy,

Max[/] € ¢'(Max'[7],Length’[7])
and

4.2 NUMBER PROBLEMS AND;’;RONG NP-COMPLETENESS 93

Max'[I] < q(Max[I],Length{I]D

All the results we state will hold for any Length and Max functions that are
polynomially related to the ones we are using.

As an example, consider the PARTITION problem, in which an in-
stance / consists of a finite set 4 and a size s(a) € Z* for each a€4. Any
of the following would be a suitable Length function for PARTITION:

Lengthl/] = |4]+ Y [log; s(a)]
a€A

Lengthl/] = | 4| + max {[log, s(a)]: a€ 4]}
Lengthl/] = [4] -[log, ¥ s(a)]

a€Ad
Similarly, any of the following would be a suitable Max function for PAR-
TITION:

Max[/] = max {s(a): a€A4}
Max[/] = ¥ s(a)

a€Ad

Max(I] = [(X s(a))/ 4]
acA
We leave for the reader to verify that any of the nine pairs of Length and
Max functions that can be chosen using these two lists is polynomially relat-
ed to any of the others.

The flexibility we are allowed in choosing Length and Max functions
will enable us to avoid explicitly stating the ones we have in mind for a
problem II, since they can be inferred with sufficient accuracy from our
description of a generic problem instance. An appropriate Length function
is implied by what we consider to be a reasonable encoding scheme for the
problem, and the latter follows from our description of the generic instance
using the standard conventions set forth at the end of Section 2.1. An ap-
propriate Max function is implied by our specifying that certain objects in
the generic instance are numbers (in distinction to sets, sequences, graphs,
named elements, etc.). These numbers usually will be integers, and any
more complicated ‘“‘number’’ in an instance will be viewed as being a com-
posite of one or more separate integers, as has already been done for ration-
al numbers. By convention, we will take Max[/] to be the magnitude of
the largest integer occurring in 7, or 0 if no integers occur in /.

One final property will be required of the functions Max and Length.
This is that, given any reasonable encoding scheme for II, there must exist
polynomial time DTMs that take as input the encoded representation of any
instance 7 €Dy and that output the values of Length [/] and Max[7], writ-
ten in binary notation. We need this property solely because we will be

|
i

94 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

considering restrictions on instances defined in terms of Length [/] and
Maxl[/1, and we need to be able to decide whether or not a given string en-
codes an instance meeting these restrictions. Any natural choices for
Length and Max will certainly have this property.

The definitions that follow assume that every decision problem I has
an associated Length function and an associated Max function as discussed
above. Formal precision at the language level would also require that an
encoding scheme be given for each problem II. However, it is convenient
to state the definitions at the problem level without this proviso, operating
under our standard assumptions about the use of reasonable encoding
schemes. The reader should have no difficulty in filling in the details need-
ed to make these definitions precise at the language level, and it is more na-
tural and informative to continue our discussions in terms of problems.

An algorithm that solves a problem IT will be called a pseudo-polynomial
time algorithm for 11 if its time complexity function is bounded above by a
polynomial function of the two variables Length[/] and Max[/]. By
definition, any polynomial time algorithm is also a pseudo-polynomial time
algorithm, because it runs in time bounded by a polynomial in Length[7]
alone. However, we have already seen an example of a pseudo-polynomial
time algorithm that is nor a polynomial time algorithm, that given for PAR-
TITION. This shows that, even though an NP-completeness result for a
problem IT rules out the possibility of solving IT with a polynomial time al-
gorithm (unless P=NP), it does not rule out the possibility of solving IT
with a pseudo-polynomial time algorithm.

To be more precise, an NP-completeness result does not necessarily
rule out the possibility of solving II with a pseudo-polynomial time algo-
rithm. Many of the decision problems we have considered so far have the
property that Max[/] is itself bounded by a polynomial function of
Length [/1, and for these problems there is no distinction between polyno-
mial time algorithms and pseudo-polynomial time algorithms. For example,
the only number that occurs in an instance of CLIQUE is the bound J, and
J is constrained to be no larger than the number of vertices in the given
graph. SATISFIABILITY involves no numbers at all, except for the sub-
scripts on variables and literals, and these can be ignored because they actu-
ally are “‘names” rather than “‘numbers.”” (Our conventions on encoding
schemes ensure that such numerical ““names’® will always be polynomially
bounded in terms of Length[/].) The issues we are concerned with here
are not relevant for problems like this, so let us give a name to the type of
problem for which these issues are relevant. We say that a problem IT is a
number problem if there exists no polynomial p such that
Max[/] < p(Lengthl/]) for all € Dy. The only number problem among
our six basic NP-complete problems is PARTITION.

As an immediate consequence of this definition, we can make the fol-
lowing observation:

4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS 95

Observation 4.1 If 11 is NP-complete and IT is not a qumber problem, then
IT cannot be solved by a pseudo-polynomial time algorithm unless P =NP.

Thus, assuming that P# NP, the only NP-complete problems that are po-
tential candidates for being solved by pseudo-polynomial time algorithms
are those that are number problems.)

For any decision problem II and any polynomial p (over the integers),
let I, denote the subproblem of [T obtained by restricting II to only those
instances / that satisfy Max([/] < p(Length[I]). Then II, is not a number
problem. Furthermore, if II is solvable by a pseudo-polynom{al time qlgo-
rithm, then II, must be solvable by a polynomial time algonthm. Given
any input string x, all we need do is check that x encodes an mstance.l
satisfying Max[/] < p(Length[/]) and, if so, apply the pseudo-polynomial
time algorithm for IT to /. By our assumption that Max[/] and Length [/]
can be computed in polynomial time, the required inequality can be chgcked
in polynomial time. By the definition of pseudo-polynomial time al'gonthm,
the algorithm for IT will be a polynomial time algorithm for the instances
that satisfy this inequality. This motivates us to call a decision problem IT
NP-complete in the strong sense if II belongs to NP and there exists a pplynq-
mial p over the integers for which II, is NP-complete. In particular, if IT is
NP-complete and II is not a number problem, then II is automatically NP-
complete in the strong sense.

We then have the following generalization of Observation 4.1:

Observation 4.2 If I1 is NP-complete in the strong sense, then IT cannot be
solved by a pseudo-polynomial time algorithm unless P =NP.

This second observation provides the means for applying the theory pf
NP-completeness to questions about the existence of pseudo-polynpmtal
time algorithms. We know that PARTITION cannot be NP-cqmpl?te in the
strong sense, because it can be solved by a pseudo-polynomial time algo-
rithm. However, we have not yet seen any examples of number problen}s
that are NP-complete in the strong sense. This situation will be rectified in
the next section, where we illustrate how strong NP-completeness results
can be proved.

4.2.2 Proving Strong NP-Completeness Results

The most straightforward way to prove that a number probl.em Il is
NP-complete in the strong sense is simply to prove for some specific poly-
nomial p that I, is NP-complete. For example, the TRAVELING SALES-
MAN problem (TS) defined in Section 2.1 is a number problem becausg
there are no constraints on the values of either the intercity distances d(/,;)
or the bound B. We proved TS NP-complete by transforming HAMIL-

96 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

TONIAN CIRCUIT to it. Moreover, the instances of TS created by this
transformation all have intercity distances equal to 1 or 2 and a bound B
equal to the number m of cities. Thus if we take Max[/] to be the larger
of B and the longest intercity distance, and we take Length[/] to be
m + [log, Bl + ¥ [log, d(i,j)], then all the instances created by this transfor-

iJj
mation satisfy the bound
Max[/] < Length{/]

In other words, this transformation actually shows that the subproblem of TS
made up of all those instances satisfying the above inequality is itself NP-
complete. It follows that TRAVELING SALESMAN is NP-complete in the
strong sense.

In contrast, the NP-completeness proofs for KNAPSACK, MUL-
TIPROCESSOR SCHEDULING, and SEQUENCING WITHIN INTER-
VALS, described in Section 3.2, all leave open the possibility that these
problems can be solved by pseudo-polynomial time algorithms. It turns out
that KNAPSACK can be solved in pseudo-polynomial time, using a dynam-
ic programming approach similar to that we used for PARTITION, as del-
ineated in [Dantzig, 1957]. All pseudo-polynomial time algorithms known
to us are based on similar techniques, and we refer the reader to [Horowitz
and Sahni, 1976], [Lawler, 1977a], [Lawler and Moore, 1969}, and [Sahni,
1976] for illustrations of these techniques.

The problems MULTIPROCESSOR SCHEDULING and SEQUENC-
ING WITHIN INTERVALS, however, do turn out to be NP-complete in
the strong sense. In order to show this, it is useful to have a number prob-
lem that is NP-complete in the strong sense and that is somewhat ‘‘more
numeric’’ than any we have seen so far. Such a problem is provided by our
seventh ‘‘basic’” NP-complete problem, 3-PARTITION, which is defined as
follows:

3-PARTITION

INSTANCE: A finite set 4 of 3m elements, a bound B€Z™*, and a ‘‘size”
s(a)€Z* for each a€A, such that each s(a) satisfies B/4 < s(a) < B/2
and such that ¥, , s(a) =mB.

QUESTION: Can A be partitioned into m disjoint sets §,S,, . .., S, such
that, for 1 <i < m, T es,5(a) = B? (Notice that the above constraints on

the item sizes imply that every such S; must contain exactly three elements
from 4.)

We prove that 3-PARTITION is NP-complete in the strong sense in
two steps, first proving that the related 4-PARTITION problem is NP-
complete in the strong sense. 4-PARTITION is identical to 3-PARTITION
except that the set 4 contains 4m elements and each s(a) must satisfy

97
4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS

B/5 < s(a) < B/3. Thus each set in the desired partition will contain ex-
actly four elements.

'3 4-PARTITION is NP-complete in the strong sense.
;f:g;:e'?t 1s3easy to see that 4-PARTITION beloqgs to NP, since all we n(:eg
do is verify in polynomial time that a given partition of 4 has all the state
properties. We shall transform 3-DIMENSIONAL MATQHING to a :!es(-1
tricted version of 4-PARTITION in which all the elemgnt sizes are bour;) e
by a polynomial function of the total number'of elemcqts, and h{cr;ce yba
polynomial function of Length[7]. In particular, te.lkmg Max{/] to be
max {s(a):a€A} we shall show that 4-PARTI;£[ON4IS NP-complete even
when restricted to instances / with Max[/1 <2 |4l |

Let W= (wpwy, ... W} X=l{xix, ... Xl Y=y, o)
and M C W x X x Y denote an arbitrary instance of 3DM. We may assum:,_
without loss of generality that [M|>gq. Our corresponding 4mstance o
4-PARTITION has |4|=4|M| elements, one for each occutrence of a
member of W u X u Y in a triple in M and one for each triple in M.

The elements corresponding to a particular z € WuXu Y will be de'not-
ed by z[11, 212, zIN(2)}, where N (2) denotes the numl‘)‘er of t’slplles
from M in which z occurs. We shall regard z{1] as being the a?fual ele-
ment corresponding to z, and z[2] through zIN(2)] as being the dumxlr:.yh
elements corresponding to z. The sizes of these elemeflts. depend on whic
one of W, X, or Y contains z and on the index of z within that set. These
are defined as follows, where r is chosen equal to 32¢:

s(w, 1) = 10744+ ir+1 1<i<gq
swlll) = 1rt+irdl 1<i<q, 2<ISN(W)

sCo1D) = 1074+ 42 1<j<¢q
sl = 1r44+jr2+2 1<j<q, 2<ISN ()

s(y (1) = 10r*+kr3+4 1<k<gq
s(y:m) — Srt+kri+4 1<k<gq, 2<ISNGY)

T i 4 i [icu[ar triplc

he Slng[e element Corfespondlng . to a par it

my= (W Xj yk) € M is denoled by u, and its size deper\ds on the indices Of
Al k]

its members as follows:
s(u) = 10r4—kr3—jri—ir+8

Notice that, if we add to s(u;) the sizes of three elements that correipor;csi
to w;, x;, and Yk, respectively, then the total will be equal to 40r°+
wher;evelr all three are ‘‘actual” elements or whenever all three are

“dummy’’ elements. We choose this number to be our bound B, that is,

;‘|
i
i

98 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

B = 40r*+15-|4P+15

The reader should have no difficulty verifying that this is a polynomial
transformation, that the size of each element is strictly between B/3 and
B/S, and that the sum of all the element sizes is |M|-B, as required.
Furthermore, we observe that the size of each element is bounded above by
12r% < 12-8%|4|* < 21| 4|*. Thus all that remains to be done to prove
that 4-PARTITION is NP-complete in the strong sense is to show that the
desired 4-partition exists if and only if M contains a matching.

First, suppose that M'C M is a matching. The corresponding 4-parti-
tion is made up of | M| 4-sets, each containing a u, a w;[]; an x;['], and a
wll, where (w,x,y)=m€eM. If m€M, we group u with
w11, x;[11, and y,(1]. If m € M—M', we group u; with “‘dummy” ele-
ments corresponding to w;, x;, and y,. It is not hard to see that there are
enough dummy elements so that this can be done, and by our previous
comments the sizes of the four elements in each set will sum exactly to B.
Thus we have our required 4-partition.

Now suppose we are given a 4-partition of the required form. Consider
any 4-set in this 4-partition. By successively considering the sum of the ele-
ment sizes modulo r, r2, r3, r and r3, we shall show that this 4-set must
contain one element corresponding to each of the three members of that tri-
ple, all three being ‘‘actual’’ elements or all three being ‘‘dummy’’ ele-
ments. First, since r > 4-8 =32, we know that the sum modulo R of the
sizes of the four elements, which must equal B(mod r) =15, is the same as
the sum of the item sizes when each is taken modulo r beforehand. The
only way these can sum to 15 is for the 4-set to contain one element that
corresponds to a member of W, one that corresponds to a member of X,
one that corresponds to a member of Y, and one that corresponds to a tri-
ple from M. Let w, x;,and y, denote the corresponding members of
W,X,and Y, and let m = (wp, x;,) denote the corresponding triple
from M. Then the sum of the element sizes modulo r? must equal
(Gi=i")r +15)(mod r?) and, since (i—)r+15 < r2, we must have

B(mod r?) =15 = (i—i)r+15

It follows from this that i=. Similarly, since (j—j)r2+15 < r3, we
must have

B(mod r3) =15 = (j—j)r*+15
and hence j =, and , since (k—k)r3>+15 < r*, we must have
B(modr%) =15 = (k—k')r3+15

and hence k=k'. Thus w;, X;,and y, are indeed the three members of the
triple m;, and we know that the coefficient of r* in the sum of the element
sizes is simply the sum of the individual coefficients for r*. Our choice of
these coefficients in the construction then guarantees that the only way for

4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS 99

them to sum to 40 is for all three elements to be “‘actual’ elements or for

all three to be “‘dummy’’ elements.
The total collection of 3¢ ‘‘actual’’ elements, one for each member of

Wu X u Y, must therefore be contained in ¢ of. our given:x 4-sets, each of
these 4-sets consisting of one element corresponding to a triple from M .and
the three “‘actual’ elements corresponding to thc? members of that triple.
Those ¢ triples from M provide the desired matching. ®

m 4.4 3-PARTITION is NP-complete in the strong sense.
:f:gjr?e It is easy to see that 3-PART1TION_ belqngs to.NP. We shall
transform the subproblem of 4-PARTITION in Whl(?h a'll.mstances satisfy
max {s(a):a€A4} < 2'6-|4]* to 3-PARTITION, maintaining the property
that all element sizes are bounded by a polynomial function of the total

number of elements. ' . o
Let 4= {apa;, .. ,a4,,}, bound B, and item sizes s(a) satisfying

6044 ification of any such
B/S < s(a) <B/3 and s(a) <2'%|4| be a speci
instance of 4-PARTITION. Our corresponding instance of 3-PARTITION
will have 24n?—3n elements, one for each element from 4, two for each
pair of elements from 4, and 8n2—3n “filler” elements.“ '
Corresponding to each element a;€A is a ‘“‘regular’”’ element w;, with
size defined by

s'(w) = 4 (5B+s(a)) +1

where we use s'(?) to denote the size function in our 3-PARTITION
instance. Corresponding to each pair of ek?ments a;,a;€4 we have two
“pairing”’ elements, uli,j] and #li,j], with sizes defined by

s'(uli,j1) = 4 (6B —s(a) —s(a))) +2
s'(ali,j1) = 4 (5B +s(a) +s(a;)) +2

i 1 < k <8n?—3n, we have a “filler” element u with size
l:’l?;,?;; f;)(;B. Tl"he bound B’ for our 3-PART[T[OI.\1 instance is 64.th+ 4.
Once again the reader should encounter no difficulty in venfymg 'that
this is a polynomial transformation, that the size of every element 1s strlctly:
between B'/4 = 16B+1 and B'/2 =32B+2, and that the sum of all t!}e
element sizes is equal to (8#2—n)B'. Furthermore, since the e‘leme.nts in
A are constrained to have sizes no larger than 26| 4[4, the sizes in the
3-PARTITION instance will also satisfy a polynomial bound in terms of
|A|, hence in terms of the number of elements in the cons}ructed instance
I', hence in Length [/]. Thus, to complete our demonstration that 3-PAR-
TITION is NP-complete in the strong sense, we need onI_y show th.a.t a
3-partition exists for the constructed instance if and only_lf a 4-partition
exists for the original instance.

100 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

First, suppose that we have a 4-partition for the original instance. The
corresponding 3-partition is constructed as follows: Arbitrarily divide each
4-set {a;,a;,a;,a} into two 2-sets, say {a;,a;} and {a,,q,}. Our 3-partition
will then contain the two 3-sets {w;,w;,uli,jl} and {w,,w,,uli,j]}. (Notice
that we could just as well have used u[k,/] instead of uli,j] and ulk,!]
instead of #[i,j].) The sizes of the elements in each of these 3-sets sums
to B’ since s(a;) +s(a;) +s(a,) +s(a) = B. Doing this for each of the n
given 4-sets, we obtain 2n 3-sets that contain all of the ‘“‘regular’’ elements
and n matched pairs of ‘“‘pairing” elements. This leaves 87— 31 matched
pairs of “‘pairing’ elements and 8n%2—3n “‘filler” elements. Since the sum
of the sizes of two matched *‘pairing” elements is 448 +4 = B'—20B,
each such matched pair can be grouped with a remaining one of the ‘‘filler”’
elements to complete the desired 3-partition.

Now suppose that we are given a 3-partition for the constructed
instance. By considering the element sizes modulo 4 we see that no 3-set
can contain an odd number of ‘‘regular’ elements, no 3-set can contain
three ‘‘pairing’’ elements, and no 3-set can contain two “‘regular’’ elements
and a ““filler” element. It follows that the given 3-partition is made up of
2n 3-sets that each contain two ‘“‘regular’’ elements and one ‘“‘pairing’’ ele-
ment, along with 8#2—3p 3-sets that each contain two ‘“‘pairing”’ elements
and one ““filler’’ element. Consider any one of the latter type of 3-sets, and
let uli,jl (or #lk,i]) be one of the two “‘pairing” elements in that set. If
the other pairing element in this 3-set is not @[i,j] (or ulk,/l), then it
must have the same size as that matching element and so can be inter-
changed with it to obtain an equivalent 3-partition. This operation can be
repeated until we obtain a 3-partition in which every “filler’” element occurs
together with a matched pair uli,/l, uli,jl. Thus, any “pairing” element
that occurs with two ‘‘regular’’ elements in this 3-partition is such that its
“match’ also occurs in such a 3-set. This divides the 3-sets containing
“regular’’ elements into n pairs of 3-sets. Since the two “pairing”’ ele-
ments in each such pair of 3-sets are matched, their sizes sum to 448 + 4,
and hence the sizes of the four ‘‘regular’® elements must sum to 848 + 4.
This implies that the corresponding four elements from 4 form a 4-set of
elements whose sizes sum to B. Therefore these n pairs of 3-sets provide
the required 4-partition. ®

Notice that this last transformation, if viewed as a transformation from
the general 4-PARTITION problem to 3-PARTITION, would not be
enough to prove strong NP-completeness for 3-PARTITION. We needed to
restrict our attention to an NP-complete subproblem of 4-PARTITION in
which max{s(a)} was polynomially bounded. However, it is easy to see
that the particular polynomial bound that we chose was not essential.
Indeed, it would be convenient if we could operate with transformations
like this without needing to go into the details of the subproblems and the
particular polynomials involved. This can be done using the following
definition and lemma.

4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS 101

Let IT and IT' denote arbitrary decision problems with instance sets Dy
and Dy, “‘yes” sets Y, and Y, and specified functions Max, Length,
Max', and Length’, respectively. A pseudo-polynomial transformation from II
to IT' is a function f: Dy — Dy such that

(a) for all /€Dy, I€Yy if and only if f(I)€Y,

(b) f can be computed in time polynomial in the two variables
Max([7] and Length [/],

(c) there exists a polynomial g, such that, for all /€Dy,
q;(Length’'[£(1)]) = Lengthlr]
(d) there exists a two-variable polynomial g, such that, for all /€ Dy,
Max'[f(I)] < q,(Max[71,Length(/])

Lemma 4.1 If II is NP-complete in the strong sense, II'€NP, and there
exists a pseudo-polynomial transformation from II to IT', then IT' is NP-
complete in the strong sense.

Proof: Let f be such a pseudo-polynomial transformation, with functions
q, and g, as specified in the definition. We can assume without loss of gen-
erality that ¢; and g, have only positive integer coefficients, since they can
be so modified without decreasing their values. Because II is NP-complete
in the strong sense, there is some polynomial p such that II, is NP-
complete. Furthermore, we can choose such a p that has only positive
integer coefficients, because if p, is any polynomial over the integers satisfy-
ing po(x) > p(x) for all x, then II, will contain all the instances of I1, and

hence must be NP-complete if M, is. Let p be the polynomial defined by
ﬁ(x) = qz(p(ql(x)),ql(x))

We claim that the function f, when restricted to instances of I1,, becomes
a polynomial transformation from II, to Hi,’, thus proving that II,.,' is NP-
complete. First let us see that every instance I of I, is mapped by f to an
instance of l’!b’. Using the definition of IT, and the inequalities satisfied by
¢: and g, we have, for each instance I of II,,

Max'[f(1)] < g,(Max[7],Length[/])
< ¢,(p(Length(7]), Length[I])
< ¢2(p(q;(Length’[£(1)1)),q;(Length'[£(I)]))
= p(Length'[£(I)])

Thus f(7) is an instance of IT;. Conditions (a) and (b) of the definition of
pseudo-polynomial transformation, along with the fact that every instance /
of I, satisfies Max[/] < p(Lengthl[/]), then imply immediately that f
meets the remaining requirements to be a polynomial transformation.

=

USING NP-COMPLETENESS TO ANALYZE PROBLEMS

Hence I is NP-complete, and it follows that IT' is NP-complete in the _

strong sense. ®
This lemma frees us from having to deal with particular subproblems
I1, when proving strong NP-completeness results, a great convenience since

However, the complicated definition of pseudo-polynomial transformation
might appear to be a rather formidable obstacle to using this approach. In
fact, it is not as complicated as it seems. Condition (a) s identical to one

TITION problem to 3-PARTITION. The 3-PARTITION problem itself
earns its title as our seventh “‘basic NP-complete problem” because of the
ease with which pseudo-polynomial transformations can be constructed from
it. For instance, we can use such a transformation to show that the
SEQUENCING WITHIN INTERVALS problem, proved NP-complete in
Section 3.2.2, is actually NP-complete in the strong sense.

Theorem 4.5 SEQUENCING WITHIN INTERVALS is NP-complete in the
strong sense.
Proof: Recall that in this problem we are given a set T of tasks, each task
!€T having a length /(s) € Z* ang a time interval [r(r),d(s)] within which
it is to be executed, and we are asked whether the tasks can be sequenced
to obey these constraints, with at most one task ever being executed at a
time. In Section 3.2.2 we proved it to be NP-complete, and hence we
already know that it belongs to NP. We shall give a pseudo-polynomial
transformation from 3-PARTITION to SEQUENCING WITHIN INTER-
VALS.

Let 4 ={a},a,,@3,), BEZ*, and s(a),s(ay), . .., s(a3,,) con-
stitute an arbitrary instance of 3-PARTITION. The corresponding instance
of SEQUENCING WITHIN INTERVALS is given by

T=A4U{e:1<i<m)
(1) = s(a) it t=a ca

!; : 4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS

103

iB+i—1 ifr=¢,1<i<m

=19 if t=a;€4

iB+i ift=1¢,1<i<m
dle) = lmB+m—l if 1=a;€4

. ial in t
This transformation clearly can be performed in time polynomial in the

input length alone, and the length of the constructed ips}ancez bl)s :rc:(liyr(\:)n:;
e I i instance, so conditions

ted to the length of the given » S ‘
at?y ;Zlgn?tion of pseudo-polynomial transformaglon are met.1 Furt::rrlg:gi)en
:h: largest number in the constructed instance is m B+m —1, so

(d) is met. All that remains to be shown is that condition (a) is met, just as

i ual NP-completeness proofs. ' ' h
" OL:'::ys sequence that satisfies the specified constraints must execute eac

k ¢ 1<i<m, from time iB+i—1 to time iB+i, as showntlm ;lg:;g
;a; ’i"’his leaves m separate blocks of time, each of length ixa(; Syks ;eA
{née this is just enough time in total to accommodate all t el alhe samé
Zach block must be completely filled. These blocks ther?f/c;re [pt a;_)(')uows me
i ired partition of 4.
e sets 51,55, ..., lnthed?sue ! A '
I:Le::sitl!;d sequelnce2 exists ifmand only if the desired partition exists for the

given 3-PARTITION instance.

B
B B

L[« o] «or [m] |

0 B B+l 2B+1 2B+2 mB+m—1

i i instance
i i uence meeting the constraints of an ins
Flgure 4.9 Tp géngE:g;%j &';I?l':lel(lil INTERVALS obtained by transforming an
?nslance of 3-PARTITION in the proof of Theorem 4.5.

iti i indeed have given a pseudo-
condition (a) is met, and we in u
oly:;];?al transformation from 3-PARTITION to SEQUENCII‘II)?‘:V?SF oy
FNTERVALS By Lemma 4.1, this proves that the latter proble
complete in the strong sense. s dor try t ruct a similar
ry to cons
We suggest as an exercise that the reade SSOR
transfo?mat?gn from 3-PARTITION to the MULT?;\IJ{IQSOE‘Inplete
SCHEDULING problem defined in Section 3.2.1. Our lists od N et
problems contain a number of other problems that are prove ity oar.
in the strong sense with comparable ease, mege[ly,':g 'Fiilglh(t)ll’)& nilr?steZd o
i t used PARTITION to use 3-PARTI .
lsller;igpl:.t(;‘gﬁw;x nature of these modifications is indicative of the usefulness

of 3-PARTITION.

104 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

We conclude this section with an example of how a pseudo-polynomial
transformation from 3-PARTITION can be useful for proving an ordinary
NP-completeness result for a problem that is not a number problem. In
fact, this problem will involve no numbers at all!

Recall the SUBGRAPH ISOMORPHISM problem defined in Section
2.1: Given two graphs G and H, is H isomorphic to a subgraph of G? We
proved this problem NP-complete in Section 3.2.1 simply by noting that it
contains CLIQUE as a special case. However, there is one important sub-
problem of SUBGRAPH ISOMORPHISM that is known to belong to P.
This is the problem SUBTREE ISOMORPHISM in which both G and H are
required to be frees (a tree is a connected graph that contains no cycles). A
polynomial time algorithm for this subproblem has been obtained by
Edmonds and Matula [1976] (see also [Reyner, 1977]).

Our philosophy of trying to narrow in on the ‘“‘boundary’’ between easy
and hard subproblems of an NP-complete problem then suggests the follow-
ing question: What if only one of G and H is required to be a tree? In one
case the answer is immediate. The version in which only H is required to
be a tree contains HAMILTONIAN PATH as a subproblem and hence is
NP-complete. The case in which only G is required to be a tree is more
interesting. We know that H cannot be a subgraph of such a G unless it. is
acyclic (contains no cycles), but this does not imply that H must be a tree,
since it might be disconnected. In general, an acyclic graph is called a
forest, with only connected forests being trees (see Figure 4.10).

Y
\/

G F T

Figure 4.10 Examples of a graph G, forest F, and tree T. G is a graph but not a
forest, and F is a forest but not a tree. F is not a subforest of T, but
each tree in F is a subtree of 7.

Let us give the name SUBFOREST ISOMORPHISM to the subproblem
of SUBGRAPH ISOMORPHISM in which G is required to be a tree and H
is required to be a forest. Despite the similarity of this problem to the poly-
nomially solvable SUBTREE ISOMORPHISM problem, we have the follow-
ing theorem:

4.2 NUMBER PROBLEMS AND STRONG NP-COMPLETENESS 105

Theorem 4.6 SUBFOREST ISOMORPHISM is NP-complete.
Proof: Membership in NP follows from that for SUBGRAPH ISOMOR-
PHISM. We shall give a pseudo-polynomial transformation from 3-PAR-
TITION to SUBFOREST ISOMORPHISM, and the result will follow by
Lemma 4.1.

Let A={a\a;,...,a,}, BEZ*, and s(a)),s(ay), ..., s(a,) in Z*
constitute an arbitrary instance of 3-PARTITION. The corresponding
instance of SUBFOREST ISOMORPHISM is illustrated in Figure 4.11.

/ -%\. “Star”
S —_—
m vertices
B+1 I f [o
.o d ' i" chain
vertices ! .
oot ! T §...%}has s(a)
I . - vertices
{i
gw__j
J)
— 3m chains
m chains
G H

Figure 4.11 The tree G and forest H corresponding to an instance of
3-PARTITION in the proof of Theorem 4.6.

The tree G consists of m chains of B+1 vertices each, all attached at
one end to an additional common vertex. The forest H consists of 3m +1
trees, including one ‘‘star” on m+1 vertices and 3m chains, each
corresponding to a particular element @ € 4 and having s(a@) vertices.

Any isomorphism from H to a subgraph of G must map the center of
the star to the single high-degree vertex of G. The m neighbors of the
center of the star in A then must be mapped to the m neighbors of that
vertex in G. This leaves m chains, each of B vertices, in G to which the
rt?maining 3m chains in H must be mapped by the isomorphism. The map-
ping of these chains from H to the remainder of G corresponds to a parti-
tion of the elements of 4 into m sets and, by our construction, can be com-
pleted if and only if the elements in each set have sizes summing exactly to
B. Thus the required isomorphism from H to a subgraph of G will exist if
and only if the required 3-partition of 4 exists.
~ This confirms condition (a) of a pseudo-polynomial transformation. It
Is easy to see that this transformation can be performed in time polynomial
in m and B, so condition (b) is satisfied. The total number of vertices in G

vy USING NP-COMPLETENESS TO ANALYZE PROBLEMS

and H is 2(m B+1), so condition (c) is satisfied. Finally, there are no
numbers in the constructed instance, so condition (d) holds. Thus by Lem-
ma 4.1, SUBFOREST ISOMORPHISM is NP-complete in the strong sense,
which implies that it is NP-complete in the ordinary sense as well. ®

4.3 Time Complexity as a Function of Natural Parameters

So far in this chapter we have motivated the study of subproblems
mainly on the basis of the fact that in practice it is often the subproblem,
rather than the general problem, that we are called upon to solve. Having
mapped the boundary between the NP-complete subproblems and the poly-
nomial time solvable subproblems, one is better prepared to focus the
search for algorithms in potentially profitable directions when such a sub-
problem arises. .

Results concerning subproblems also can be used to help guide the
search for algorithms that solve the general problem. If the general prob-
lem is NP-complete, we know that an exponential time algorithm will be re-
quired (unless P=NP), but there are a variety of ways in which the time
complexity of an algorithm can be ‘‘exponential,”’ some of which might be
preferable to others. This is especially evident when, as is customary in
practice, we consider time complexity expressed in terms of natural problem
parameters instead of the artificially constructed ‘‘input length.”

For example, consider the MULTIPROCESSOR SCHEDULING prob-
lem of Section 3.2.1. Here a collection of natural parameters might consist
of the number n of tasks, the number m of processors, and the length L of
the longest task. The ordinary NP-completeness result for this problem
proved in Section 3.2.1 implies that, unless P=NP, MULTIPROCESSOR
SCHEDULING cannot be solved in time polynomial in the three parame-
ters n, m, and log L. However, one can still ask whether it is possible to
have an algorithm with time complexity polynomial in m”" and log L, or
polynomial in #»™ and log L, or polynomial in n, m, and L, or even poly-
nomial in (n L)™.

Our complexity results for subproblems shed some light on these ques-
tions. The original NP-completeness result for MULTIPROCESSOR
SCHEDULING actually shows that the subproblem in which m is restricted
to the value 2 is NP-complete, thus ruling out an algorithm polynomial in
n™ and log L (unless P=NP), since such an algorithm would be a polyno-
mial time algorithm for this subproblem. Our subproblem results do not
rule out an algorithm polynomial in m” and log L, and indeed exhaustive
search algorithms having such a time complexity can be designed. Analo-
gously, the strong NP-completeness result for MULTIPROCESSOR
SCHEDULING claimed in Section 4.2.2 rules out an algorithm polynomial
in n, m, and L (unless P=NP). It leaves open the possibility of an algo-
rithm polynomial in (nL)™ (which would give a pseudo-polynomial time

4.3 TIME COMPLEXITY AS A FUNCTION OF NATURAL PARAMETERS 107

algorithm for each fixed value of m), and again such an algorithm can be
shown to exist.

Thus by considering the subproblems obtained by placing restrictions
on one or more of the natural problem parameters, we obtain useful infor-
mation about what types of algorithms are possible for the general problem.
Care must be taken to ensure that the parameters we choose are sufficiently
representative of instance size that Length [/] can be expressed as a polyno-
mial function of them (so that the class of polynomial time algorithms for
the problem is identical to the class of algorithms polynomial in the selected
parameters), but otherwise we may choose whatever parameters seem most
natural and relevant. A general NP-completeness result then will imply that
the problem cannot be solved in time polynomial in all the chosen parame-
ters, and information obtained by restricting these parameters can be mean-
ingful with regard to other types of general algorithms.

Although questions concerning strong NP-completeness and pseudo-
polynomial time algorithms are especially relevant here, analyses of this
type also can be applied fruitfully to problems that are not number prob-
lems, since all problems have natural numerical parameters like sizes of
sets, values of bounds, etc. Thus, for instance, the NP-completeness of
3-SATISFIABILITY rules out the possibility (unless P=NP) of an algo-
rithm for SATISFIABILITY that runs in time polynomial in (mn)™, where
m is the number of clauses, »n is the number of literals, and M is the max-
imum number of literals per clause, whereas for the CLIQUE problem an
n? algorithm is possible, where n is the number of vertices and D is the
maximum vertex degree. Thus the theory of NP-completeness can be used
to guide our search not only for polynomial time algorithms, but for ex-
ponential time algorithms as well.

	current

