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Proof: Let I:1 and I:2 be the alphabets of L1 and L2 respectively, let 
/:I:j-• I:i be a polynomial transformation from L1 to L2, let M1 denote a 
polynomial time DTM program that computes f, and let M2 be a 'polynomi
al time DTM program that recognizes L2. A polynomial time DTM pro
gram for recognizing L1 can be constructed by composing M1 with M2. For 
an input x E I:j, we first apply the portion corresponding to program M1 to 
construct f (x) E 다. We then apply the portion corresponding to program 
M2 to determine if f (x) E L2. Since x E L1 if and only if f (x) E L1, this 
yields a DTM program that recognizes L 1. That this program operates in 
polynomial time follows immediately from the fact that A까 and M2 are po
lynomial time algorithms. To be specific, if Pt and p2 arl? poly~10mial ~u디c
tions bounding the running times of M1 and M2, then l/(x)I ~ p1(1xl), 
and the running time of the constructed program is easily seen to be 
O(pr(lx[) + P2(앙<!xi))), which is bounded by a polynomial in Ix!. • 

If II1 and II2 are decision problems, with associated encoding schemes 
e1 and e2, we shall write II1 ex: II2 (with respect to the given encoding 
schemes) whenever there exists a polynomial transformation from L [I1i.e1J 
to L [IT2 ,e2l. As usual, we will omit the reference to specific encoding 
schemes when we are operating under our standard assumption that only 
reasonable encoding schemes are used. Thus, at the problem level, we can 
regard a polynomial transformation from the decision problem II1 to the de
cision problem I12 as a function /:Du - Du that satisfies the two condi-
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tions: 

Figure 2.5 A tentative view of the world 。f NP. 

2.S Polynomial Transformations and NP-Completeness 

If P differs from NP, then the distinction between P and NP - P is 
meaningful and important. A” problems in p can oe solved with polynomi
al time algorithms, whereas all problems in NP-P are intractable. Thus, 
given a decision problem II E NP, if P 츄NP, we would like to know which 
of these two possibilities holds for II. 

Of course, until we can prove that P 츄NP, there is no hope of showing 
that any particular problem belongs to NP - P. For this reason, the theory 
of NP-completeness focuses on proving results of the weaker form “ if 
P츄NP, then II E NP-P. ” We shall see that, although these conditional 
res비ts might appear to be almost as difficult to prove as the corresponding 
unconditional results, there are techniques available that often enable us to 
prove them in a straightforward way. The extent to which such results 
should be regarded as evidence for intractability depends on how strongly 
one believes that P differs from NP. 

The key idea used in this conditional approach is that of a polynomial 
transformation. A polynomial transformation from a language L1 드 r.j to a 
language L2 드 r.; is a function f: 착‘ r.; that satisfies the following two 
conditions: 

1. There is a polynomial time DTM program that computes f. 

2. For all x E r.j, x E L1 if and only if f(x) E L2. 

1. f is computable by a polynomial time algorithm; and 

2. for all I E Du1, I E Y ut if and only if f (/) E Y u2-

Let us obtain a more concrete idea of what this definition means by 
considering an example. For a graph G = ( V,E) with vertex set V and edge 
set E, a simple circuit in G is a sequence < Vi. v2, ... , vk > of distinct ver
tices from V such that { v” V;+t } E E for I~ i < k and such that { 싸, vi) EE. 
A Hamiltonian circuit in G is a simple circuit that includes all the vertices of 
G. The HAMIL TO NIAN CIRCUIT problem is defined as follows: 

If there is a polynomial transformation from Li to L2, we write Li ex: L2, 
read “ Li transforms to L2” (dropping the modifier “ polynomial,” which is 
to be understood). 

The significance of polynomial transformations comes from the follow
ing lemma: 

HAMIL TO NIAN CIRCUIT 
INSTANCE: A graph G=(V,E). 
QUESTION: Does G contain a Hamiltonian circuit? 

Lemma 2.1 If Li ex: Li, then Li E P implies L1 E P (and, equivalently, 
Li~ P implies Li~ P). 

The reader will no doubt recognize a certain similarity between this 
problem and the TRAVELING SALESMAN decision problem. We shall 
show that HAMIL TO NIAN CIRCUIT (HC) transforms to TRAVELING 
SALESMAN (TS). This r얻~uires that we specify a function f that maps 
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x E Li. and the fact that f can be computed by a polynomial time DTM 
prog;~m follows from an argument analogous to that used in the proof of 
Lemma 2.1. • 

We can define two languages L1 and L2 (two decision problems II1 and 
n,) to be polynomially equivalent whenever both Li a: L2 and L2 a: L1 (both 
TI; a: TI2 and TI2. a: TI 1). Lemma 2.2 tells us that t덴S ,판 a legitimate 
equivalence relation and, furthermore, that the relation "a:” imposes a par
tial order on the resulting equivalence classes of languages (decision prob
lems). In fact, the class P forms the “ least” equivalence class under this 
partial order and hence can be viewed as consisting of the computationally 
“easiest'’ languages (decision problems). The class of NP-complete 
languages (problems) will form another such equivalence 미ass, dis
tinguished by the property that it contains the “ hardest” languages (deci
sion problems) in NP. 

Formally, a language L is defined to be NP-complete if LE NP and, for 
all other languages L ’ ENP, L ’ a: L . Informally, a decision problem II is 
NP-complete if II E NP and, for all other decision problems H’ ENP, 
n’ a: II. Lemma 2.1 then leads us to our identification of the NP-complete 
problems as “ the hardest problems in NP.” If any single NP-complete 
problem can be solved in polynomial time, then all problems in NP can be 
so solved. If any problem in NP is intractable, then so are all NP-complete 
problems. An NP-complete problem TI, therefore, has the property men
tioned at the beginning of this section: If P 츄NP, then II E NP- P. More 
precisely’ II E P if and only if P=NP. 

Assuming that P츄NP, we now can give a more detailed picture of “ the 
world of NP,” as shown in Figure 2.6. Notice that NP is not simply parti
tioned into “ the land of P” and “ the land of NP-complete." As we shall 
see in Chapter 7, if P differs from NP, then there must exist problems in 
NP that are neither solvable in polynomial time nor NP-complete. 
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each instance of HC to a corresponding instance of TS and that we prove 
that this function satisfies the two properties required of a polynomial 
transformation. 

The function f is defined quite simply. Su~pose G=(V,E), with 
I VI = m, is a given instance of HC. The corresponding instance of TS has a 
set C of cities that is identical to V. For any two cities 까, v; E C, the iriter
city distance d( v;. vi~ is defined to be 1 if { 까,. I E E and i otherwise. The 
bound B on the desired tour length is set equal to m. 

It is easy to see (informally) that this transformation f can be comput
ed by a polynomial time algorithm. For each of the m(m-0/2 distances 
d( v;, v} that must be specified, it is necessary only to examine G to see 
whether or not ( 까,센 is an edge in E. Thus the first required property is 
satisfied. To verify that the second requirement is met, we must show that 
G contains a Hamiltonian circuit if and only if there is a tour of all the ci
ties in /(G) that has total length no more than B. First, suppose that 
< vi. v2 , ... , vm > is a Hamiltonian circuit for G. Then 
< vi. v2, ... , vm > is also a tour in /(G), and this tour has total length 
m = B because each intercity distance traveled in the tour corresponds to an 
edge of G and hence has length 1. Conversely, suppose that 
< vi. v2, ... , Vm > is a tour in /(G) with total length no more than B. 
Since any two cities are either distance 1 or distance 2 apart, and since ex
actly m such distances are summed in computing the tour length, the fact 
that B = m implies that each pair of successively visited cities must be ex
actly distance 1 apart. By the definition of /(G), it follows that ( v;, V;+I !• 
l~i<m, and ( vm,v1} are all edges of G, and hence< vi.v2, ... , vm >is 
a Hamiltonian circuit for G. 

Thus we have shown that HC a: TS. Although this proof is much 
simpler than many we will be describing, it contains all the essential ele
ments of a proof of polynomial transformability and can serve as a model 
for how such proofs are constructed at the informal level. 

The significance of Lemma 2.1 for decision problems now can be illus
trated in terms of what it says about HC and TS. In essence, we conclude 
that if TRA VEI」NG SALESMAN can be solved by a polynomial time algo
rithm, then so can HAMILTONIAN CIRCUIT, and if HC is intractable, 
then so is TS. Thus Lemma 2.1 allows us to interpret II1 a: II2 as meaning 
that II2 is “ at least as hard" as II1. 

The “ polynomial transformability” relation is especi떠ly useful because 
it is transitive, a fact captured by our next lemma. 
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Figure 2.6 The world of NP, revisited. 

Our main interest, however, is in the NP-complete problems them
selves. Although we suggested at the outset of this secti。n that there are 
straightforward techniques for proving that a problem is NP-complete, the 

Lemma 2.2 If L1 a: Li and Li a: L3, then L1 a: L3. 
Proofi Let :Ei. :Ei, and :E3 be the alphabets of languages Li. Li, and L3, 
respectively, let /1::Et-• :Et be a polynomial transformation from L1 to Li. 
and let fi: :ti -• :Ej be a polynomial transformation from L2 to L3. Then 
th.e function I: :Et • :Ej defined by /(x) = /2{f 1 (x)) for all x E :tt is the 
desired transformati。n from L1 to L3. Clearly, /(x) E L3 if and only if 
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requirements we have just described would appear to be rather demanding. 
One must show that eveT)’ P_roblem in NP transforms to our prospective 
NP-complete problem 낀· It 1s not at all obvious how one might go about 
d이ng t~is. A priori, it 1s not even apparent that any NP-complete problems 
need exist. 

The following lemma, which is an immediate consequence of our 
definitions and the transitivity of a:, shows that matters would be simplified 
considerably if we possessed just one problem that we knew to be NP
complete. 

Lemma 2.3 If L1 and Li belong to NP, L1 is NP-complete, and L1 a; Li. 
then Li is NP-complete. 
P~oof Since Li E NP, all we need to do is show that, for every L' E NP, 
L ’ a: Li. Consider any L ’ E NP. Since L1 is NP-complete, it must be th~ 
case that L ’ a: L1. The transitivity of a: and the fact that L1 α L2 then imply 
that L ’ a; Li. • 

Translated to the decision problem level, this lemma gives us a 
straightforward approach for proving new problems NP-complete, once we 
have at least one known NP-complete problem available. To prove that n 
is NP-complete, we merely show that 

I. n E NP, and 

2. some known NP-complete problem ff transforms to n. 

Before we can use this approach, however, we still need some first NP
complete problem. Such a problem is provided by Cook’s fundamental 
theorem, which we state and prove in the next section. 

2.6 Cook’s Theorem 

The honor of being the “ first ” NP-complete problem goes to a decision 
problem from Boolean logic, which is usually referred to as the SATISFIA
BILITY problem (SAT, for short). The terms we shall use in describing it 
are defined as follows: 

Let U = ( Ui.Ui • ... , um} be a set of Boolean variables. A truth ass,땅n
ment for U is a function t: U•( T,F}. If t(u) = T we say that u is “ true” 
under t; if t(u) = F we say that u is “ false. ” If u is a variable in U‘ then 
u and u ar~ literals over U. The literal u is frue under t if and only if the 
variable u is true under t; the literal u is true if and only if the variable u 
is false. 

A clause over U is a set of literals over U, such as { u1,힘, Ug}. It 
represents the disjunction of those literals and is sati~ed by a truth assign
ment if and only if at least one of its members is true under that assign
ment. The clause above will be satisfied by t unless t(u1) =F, t(u3) = T, 

τ--
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and t(u8) = F. A collection C of clauses over U is sati~able if and only if 
there exists some truth assignment for U that simultaneously satisfies all 
the clauses in C. Such a truth assignment is called a sat,빼뼈 truth ass,뺑
ment for C. The SATISFIABILITY problem is specified as follows: 

SATISFIABILITY 
INSTANCE: A set U of variables and a collection C of clauses over U. 
QUESTION: Is there a satisfying truth assignment for C? 

For example, U = ( ui.u2} and C = { ( u1,필}, ("iii. u2}} provide an in
stance of SAT for which the answer is “ yes. ” A satisfying truth assignment 
is giyen by t(u1) = t(u2) 슨 T. On the other hand, replacing C by 
C ’= Hui.u2). {u,,u2}. {페} yields an instance for which the answer is 
“ no”; C ’ is not satisfiable. 

The seminal theorem of Cook [1971) can now be stated: 

Theorem 2.1 (Cook ’s Theorem) SATISFIABILITY is NP-complete. 
Proof: SAT is easily seen to be in NP. A nondeterministic algorithm for it 
need only guess a truth assignment for the given variables and check to see 
whether that assignment satisfies all the clauses in the given collection C. 
This is easy to do in (nondeterministic) polynomial time. Thus the first of 
the two requirements for NP-completeness is met. 

For the second requirement, let us revert to the language level, where 
SAT is represented by a language LsAT = L[SAT,eJ for some reasonable 
encoding scheme e. We must show that, for all languages L E NP, 
La; LsAT· The languages in NP are a rather diverse lot, and there are 
infinitely many of them, so we cannot hope to present a separate transfor
mation for each one of them. However, each of the languages in NP can be 
described in a standard way, simply by giving a polynomial time NDTM 
program that recognizes it. This allows us to work with a generic 
polynomial time NDTM program and to derive a generic transformation 
from the language it recognizes to LsAT· This generic transformation, when 
specialized to a particular NDTM program M recognizing the language LM, 
will give the desired polynomial transformation from LM to LsAT· Thus, in 
essence, we will present a simultaneous proof for all L E NP that L α LsAT· 

To begin, let M denote an arbitrary polynomial time NDTM program, 
specified by r. I:, b • Q • q。, qy, qN, and 8, which recognizes the language 
L = LM. In addition, let p(n) be a polynomial over the integers that 
bounds the time complexity function η1(n). (Without loss of generality, 
we can assume that p(n)'";!:;n for all n E z+.) The generic transformation 
IL will be derived in terms of Aι r, I:, b, Q, q0, qy, qN, 8, and p. 

It will be convenient to describe IL as if it were a mapping from strings 
over I: to instances of SAT, rather than to strings over the alphabet of our 
encoding scheme for SAT, since the details of the encoding scheme could 
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be filled in easily. Thus f L will have the property that for all x E L*, x E L 
if and only if fL (x) has a satisfying truth assignment. The key to the con
struction of f L is to show how a set of clauses can be used to check wheth
er an input x is accepted by the NDTM program M, that is, whether x E L. 

If the input xEl:* is accepted by M, then we know that there is an ac
cepting computation for M on x such that both the number of steps in the 
checking stage and the number of symbols in the guessed string are bound
ed by p(n), where n =Ix!. Such a computation cannot involve any tape 
squares except for those numbered -p(n) through p(n)+ l, since the 
read-write head begins at square l a:nd moves at most one square in any sin
gle step. The status of the checking computation at any one time can be 
specified completely by giving the contents of these squares, the current 
state, and the position of the read-write head. Furthermore, since there are 
no more than p(n) steps in the checking computation, there are at most 
p(n)+ 1 distinct times that must be considered. This will enable us to 
describe such a computation completely using only a limited number of 
Boolean variables and a truth assignment to them. 

The variable set U that fL constructs is intended for just this purpose. 
Label the elements of Q as q0, q1=qy, q2=qN, q3, ... , q,, where 
r=IQl-l, and label the elements of r as s0=b,si.s2, ... , s., where 
v=lf‘ l-1. There will be three types of variables, each of which has an in
tended meaning as specified in Figure 2.7. By the phrase “ at time i ” we 
mean “ upon completion of the ;th step of the checking computation." 

Variable 

Q[i,k] 

H[i,j] 

S[i,j,k] 

Range 

。~i~p(n)

O~k~r 

O~i~p(n) 
-p(n) ~j~p(n)+I 

。~i~p(n)
-p(n)~j~p(n)+I 

。~k~v

Intended meaning 

At time i, M is in state qk. 

At time i, the read-write head 
is scanning tape square j. 

At time i, the contents of tape 
square j is symb이 Sk· 

Figure 2.7 Variables in IL (x) and their intended meanings. 

A computati。n of M induces a truth assignment on these variables in 
the obvious way, under the convention that, if the program halts before 
time p(n), the configuration remains static at all later times, maintaining 
the same halt-state, head position, and tape contents. The tape contents at 
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time 0 consists of the input x, written in squares 1 through n, and the 
guess w, written in squares 一1 through -I w I, with all other squares blank. 

On the 。ther hand, an arbitrary truth assignment for these variables 
need not correspond at all to a computation, much less to an accepting com
putation. According to an arbitrary truth assignment, a given tape square 
might contain many symbols at one time, the machine might be simultane
ously in several different states, and the read-write head could be in any 
subset of the positions -p(n) through p(n)+ 1. The transformation IL 
works by constructing a collection of clauses involving these variables such 
that a truth assignment is a sati.짜,ing truth assignment if and only if it is the 
truth assignment induced by an accepting computation for x whose check
ing stage takes p(n) or fewer steps and whose guessed string has length at 
most p(n). We thus will have 

xEL 을* there is an accepting computation of M on x 

숭용 there is an accepting computation of Mon x with p(n) or 
fewer steps. in its checking stage and with a guessed string 
w of length exactly p(n) 

~ there is a satisfying truth assignment for the collection of 
clauses in fL (x). 

This will mean that f L satisfies one of the two conditions required of a 
polynomial transformation. The other condition, that IL can be computed 
in polynomial time, will be verified easily once we have completed our 
description of fL· 

The clauses in fL (x) can be divided into six groups, each imposing a 
separate type of restriction on any satisfying truth assignment as given in 
Figure 2.8. 

It is straightforward to observe that if all six clause groups perform 
their intended missions, then a satisfying truth assignment will have to 
correspond to the desired accepting computation. for x. Thus all we need to 
show is how clause groups performing these missions can be constructed. 

Group G1 consists of the following clauses: 

(Q[i,0],Q[i,11. ... , Q[i,r]}, O~i~p(n) 

{힌파, 한관까, 。〈 iζp(n), O~j<j'~r 

The first p(n) + 1 of these clauses can be simultaneously satisfied if and 
only if, for each time i, M is in at least‘ one state. The remaining 
(p(n) + 1) (r + 1) (r/2) clauses can be simultaneously satisfied if and only if 
at no time i is M in more than one state. Thus G1 performs its m1ss1on. 

Groups G2 and G3 are constructed similarly, and groups G4 and Gs are 
both quite simple, each consisting only of one-literal clauses. Figure 2.9 
gives a complete specification of the first five groups. Note that the number 
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Clause group Restriction imposed 

G1 At each time i, M is in exactly one state. 

Gi 
At each time i, the read-write head is 
scanning exactly one tape square. 

Gl 
At each time i, each tape square contains 
exactly one symbol from r. 

G4 
At time 0, the computation is in the initial 
configuration of its checking stage for input x. 

Gs 
By time p (n), M has entered state qy 
and hence has accepted x. 

For each time i, O~i<p(n), the configuration 

G6 
of M at time i+ 1 follows by a single 
application of the transition function 8 
from the configuration at time i. 

Figure 2.8 Clause groups in fL (x) and the restrictions they impose on satisfying 
truth assignments. 

of clauses in these groups, and the maximum number of literals occurring 
in each clause, are both bounded by a polynomial function of n (since r 
and v are constants determined by M and hence by L). 

The final clause group G6, which ensures that each successive 
configuration in the computation follows from the previous one by a single 
step of program M, is a bit more complicated. It consists of two subgroups 
of clauses. 

The first subgroup guarantees that if the read-write head is not scanning 
tape square j at time i, then the sy.mbol in square j does not change 
between times i and i+l. The clauses in this subgroup are as follows: 

{한되펴, H[i,j], S[i+l ,j,/]}, O~ i <p(n), -p(n) ~j ~p(n)+l, O~ /~ v 

For any time i, tape square j, and symbol s1, if the read-write head is not 
scanning square j at time i, and square j contains s1 at time i but not at 
time i+l, then the above clause based on i, j, and I will fail to be satisfied 
(otherwise it will be satisfied). Thus the 2(p(n)+1)2(v+l) 이auses in this 
subgroup perform their mission. 
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Clause group Clauses in group 

G1 {Q[i,Ol,Q[i,11. ... Q[i,r]}, O~i~비n) 
- {δπ]f,Qπ과}, O~i~p(n},O~j<j’ ~r 

G, {H[i,-p(n)J,H[i,-p(n)+l]. ...• H[i,p(n)+l]}, 。~ ;~p(n} 
‘ {Hπ]f,Hπ괴}, o~ i~p(n},-p(n) ~j <j' ~p(n}+l 

G1 {S[i,j ,01,S[i,j,l]. .... S[i,j, v]), O~ i~p(n),-p(n} ~j~p(n)+l 
, {Sτ파파T.sτ파파11.0~; ~p(n),-p(n) ~j~p(n)+l ,。~k<k’~v

4 {Q[O,O]},{H[O,l]),{S[O,O,OJ}, 
{S[O,l,k1JJ,{S[0,2,k2Jl, · · · ,(S[O,n,knJl, 
(S[O, n+l,O]}, {S[O, n+2,0]}. .... {S[O,p(n)+l ,O]), 

where x =‘sk1 sk2 · · · skn 

Gs (Q[p(n),l]} 

Figure 2.9 The first five clause groups in IL (x). 

The remaining subgroup of G6 guarantees that the changes from one 
configuration to the next are in accord with the transition function 8 for M. 
For each quadruple (i,j,k,/), 。〈 ; <p(n), -p(n) ~j~p(n) + 1, 0ζ k~r, 
and o ~ / ~ v, this subgroup contains the following three clauses: 

{.HfiJT, m과T, S낀피IT. H[i+l,j+A]} 

{iiπ가, 하파T, 한꾀;IT. Qli+I,k’]} 

{iiπ가, 한잖T, 한관;IT, S[i+l,j,/’]} 

where if qk E Q-{qy,QN}, then the values of ~. k ’, and l’ are such that 

짧k혔짧폈)뿔쩔靈歸혔월靈t찮灣,f魔;s 
restriction on satisfying truth assignments. 

Thus we have shown how to construct j::(ause groups G1 throug_h G6 
performing the previously stated missions. If x E L, then there is an 
accepting computation of M _on x of length p(n) or less, and this computa
tion, given the interpretation of the variables, imposes a truth assignment 
that satisfies all the clauses in C = G1 U Gi U G3 U G4 U Gs U G6· 
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Conversely, the construction of C is such that any satisfying truth assign
ment for C must correspond to an accepting computation of M on x. It 
follows that fL (x) has a satisfying truth assignment if and only if x EL. 

All that remains to be shown is that, for any fixed language L, IL (x) 
can be constructed from x in time bounded by a polynomial function of 
n =Ix!. Given L, we choose a particular NDTM M that recognizes L in 
time bounded by a polynomial p (we need not find this NDTM itself in 
polynomial time, since we are only proving that the desired transformation 
IL exists). Once we have a specific NDTM Mand a specific polynomial p, 
the construction of the set U of variables and collection C of clauses 
amounts to little more than filling in the blanks in a standard (though com
plicated) formula. The polynomial boundedness of this computation will 
follow immediately once we show that Length [f L (x)] is bounded above by 
a polynomial function of n, where Length [/] reflects the length of a string 
encoding the instance I under a reasonable encoding scheme, as discussed 
in Section 2.1. Such a “ reasonable” Length function for SAT is given, for 
example, by IUl·ICI. No clause can contain more than 2·IUI literals 
(that’s all the literals there are), and the number of symbols required to 
describe an individual literal need only add an additional log! UI factor, 
which can be ignored when all that is at issue is polynomial boundedness. 
Since r and v are fixed in advance and can cχmtribute only constant factors 
to I UI and !Cl, we have I UI = O(p(n)2) and !Cl= O(p(n)2). Hence 
Length [f L (x)] = I U I ·I CI = 0 (p ( n) 4), and is bounded by a polynomial 
function of n as desired. 

Thus the transformation IL can be computed by a polynomial time 
algorithm (although the particular polynomial bound it obeys will depend on 
L and on our choices for M and p), and we conclude that, for every 
L E NP, IL is a polynomial transformation from L to SAT (technically, of 
course, from L to LsAr>. It follows, as claimed, that SAT is NP-complete . 
• 

. 
、

3 

Proving NP-Completeness Results 

If every NP-completeness proof had to be as complicated as that for 
SATISFIABILITY, it is doubtful that the class of known NP-complete prob
lems would have grown as fast as it has. However, as discussed in Section 
2.4, once we have proved a single problem NP-complete, the procedure for 
proving additional problems NP-complete is greatly simplified. Given a 
problem II E NP, all we need do is show that some already known NP
complete problem n’ can be transformed to II. Thus, from now on, the 
process of devising an NP-completeness proof for a decision problem II will 
consist of the following four steps: 

(1) showing that II is in NP, 

(2) selecting a known NP-complete problem H’, 
(3) constructing a transformation f from n’ to II, and 

(4) proving that f is a (polynomial} transformation. 

In this chapter, we intend not only to acquaint readers with the end 
results of this process (the finished NP-completeness proofs) but also to 
prepare them for the task of constructing such proofs on their own. In Sec
tion 3.1 we present six problems that are commonly used as the “ known 
NP-complete problem" in proofs of NP-completeness, and we prove that 

?의 
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