13.5 Cutting planes for mixed integer optimization

13.6 SUMMArY . . « o o v e e e
13.7 EXErCiSES . . « v v v i i e e e e e e e e
13.8 Notes and Sources . . . . . . « « v v v v v o

14 Robust discrete optimization

14.1 Robust mixed integer optimization . . . . . . . ..
14.2 Robust binary optimization . . . ... ... .. ..
14.3 Robust network flows . . . . . . . ... ... ...
14.4 Robust inventory theory . . . . .. .. ... .. ..
14.5 SUMMATY .+« v v o v e e e
14.6 Exercises . . . . . . . oo
14.7 Notes and sources . . . . . . « . o oo .o

A Elements of polyhedral theory

Al CONeS . v v v o e e
A.2 Dimension of polyhedra . . . . .. ... ......
A.3 Valid inequalities . . . . . ... ...
A4 EXercises . . . . . v v i e

B Efficient algorithms and complexity theory

B.1 Efficient algorithms . . . . . .. ... .. ... ...
B.2 Complexity theory . . .. ... ... .. ......

References

Index

Contents

Chapter 1

Formulations

1.1.
1.2.
1.3.
14.
1.5.
1.6.
17,

Contents
Modeling techniques
Guidelines for strong formulations
Modeling with exponentially many constraints
Modeling with exponentially many variables
Summary
Exercises

Notes and sources




Discrete optimization problems arise in a great variety of contexts in sci-
ence, engineering and management. In such problems, we seek to find a
solution x* in a discrete set F that optimizes (minimizes or maximizes) an
objective function c¢(x) defined for all x € F. A natural and systematic
way to study discrete optimization problems is to express them as integer
optimization problems, which is exactly the emphasis of this book.

In general, given matrices A € Z™*" B € Z™** and vectors b €
Z™, c € Z™, d € Z*, the problem

minimize c¢x+d'y
subject to Ax+ By =Db,
x €Z%, y €RE,

is the mixed integer optimization problem. Notice that even if there
are inequality constraints, we can still write the problem in the above form
by adding slack or surplus variables. If there are no continuous variables y,
the problem is called the integer optimization problem. If furthermore,
there are no continuous variables and the components of the vector x are
restricted to be either zero or one, the problem is called the binary (or
zero-one) integer optimization problem. Finally, it is customary to
assume that the entries of A, B, b, c, d are integers.

Integer optimization is a rather powerful modeling framework that
provides great flexibility for expressing discrete optimization problems. On
the other hand, the price for this flexibility is that integer optimization is
computationally more demanding than linear optimization. In this chapter,
we introduce general guidelines for obtaining strong integer optimization
formulations for discrete optimization problems. We introduce modeling
techniques, discuss what constitutes a strong formulation, and compare
alternative formulations of the same problem.

1.1 Modeling techniques

In this section, we outline some modeling techniques that facilitate the for-
mulation of discrete optimization problems as integer and mixed integer
optimization problems. In comparison to linear optimization, integer op-
timization is significantly richer in modeling power. Unfortunately, there
is no systematic way to formulate discrete optimization problems, and de-
vising a good model is often an art, which we plan to explore through
examples.

Binary choice

An important use of a binary variable z is to encode a choice between
two alternatives: we may set z to zero or one, depending on the chosen
alternative.

Example 1.1 (The knapsack problem) We are given n items. The jth item
has weight w; and its value is ¢;. Given a bound K on the weight that can be
carried in a knapsack, we would like to select items to maximize the total value.
In order to model this problem, we define a binary variable z; which is one, if
item j is chosen, and zero, otherwise. The problem can then be formulated as

follows: n

maximize E CjT;
j=1

n
subject to ijxj <K,
j=1

z; €{0,1}, Vi

Forcing constraints

A very common feature in discrete optimization problems is that certain
decisions are dependent. In particular, suppose decision A can be made
only if decision B has also been made. In order to model such a situation,
we can introduce binary variables x (respectively, y) equal to one, if decision
A (respectively, B) is chosen, and zero, otherwise. The dependence of the
two decisions can be modeled using the constraint

z <y,

ie., if y = 0 (decision B is not made), then z = 0 (decision A cannot be
made). Next, we present an example where forcing constraints are used.

Example 1.2 (Facility location problems) Suppose we are given n potential
facility locations and a list of m clients who need to be serviced from these
locations. There is a fixed cost ¢; of opening a facility at location j, while there
is a cost d;; of serving client ¢ from facility j. The goal is to select a set of facility
locations and assign each client to one facility, while minimizing the total cost.

We define a binary decision variable y; for each location j, which is equal to
one, if facility j is opened, and zero, otherwise. In addition, we define a variable
Zij, which corresponds to the fraction of the demand of client i that is served by
facility j. The facility location problem is then formulated as follows:

n m n
minimize E cy; + E E dij%ij
j=1

i=1 j=1

subject to Z zij =1, Vi, (1.1)
j=1
Tij < Yis v i,j;

0<zy; <1, y; €{0,1}, Vi,j.

Here, the forcing constraint z;; < y; captures the fact that if there is no facility
at location j (y; = 0), then client i cannot be served there, and we must have
Ti; = 0.
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Relations between variables

A constraint of the form Z}‘:l z; < 1, where all variables are binary, implies
that at most one of the variables x; can be one. Similarly, if the constraint

is of the form Z;L=1 zj = 1, then exactly one of the variables z; should be
one.

Disjunctive constraints

Let x be a nonnegative vector representing a collection of decision variables.
Suppose that we are given two constraints a’x > b and ¢’x > d, in which
all of the components of a and ¢ are nonnegative. We would like to model
a requirement that at least one of the two constraints is satisfied. In order
to achieve this, we define a, binary variable y and impose the constraints:
a’x > yb,

cx>(1-y)d, ye{o,1}.

More generally, suppose we are given m constraints a/x > b;, i = 1,...,m,

where a; > 0 for each i, and require that at least k of them are satisfied.

We can achieve this by introducing m binary variables Yi,1=1,...,m, and
the constraints:

m

Zink, agxzbiyi, yiE{O,l}, izl,...,m.

i=1
Restricted range of values
Suppose we want to restrict a variable z to take values in a set {ay, ..., am}.
We can achieve this by introducing m binary variables Yi» J=1,...,m,

and the constraints
m m
T = Zajyj, Zyj =1, y; €{0,1}.
j=1 j=1

Arbitrary piecewise linear cost functions

Suppose we are interested to minimize an arbitrary piecewise linear, not
necessarily convex, cost function. We will show that we can accomplish
this using binary variables. Suppose that a; < a3 < --- < ak, and that
we have a continuous piecewise linear function f(z) specified by the points
(as, f(a;)) fori=1,.. ., k, defined on the interval [a1,ax] (see Figure 1.1).

Then, any z € [a1, ax] and the corresponding value f(z) can be expressed
in the form

k

doxi=1,

i=1

k k
z=>" \a, F@) =" Xif(ai), ALy A > 0.
i=1 =1

W:l

Iviouciig veciigues

f(z) Ak

-
L

0 a a2 asg Qg x

Figure 1.1: A continuous piecewise linear cost function.

The critical observation is that the choice of coefficients A1, .. .',)\k
used to represent a particular z is not unique. However, it becomes unique
if we require that at most two consecutive coefficients \; can be nonzero. In
this case, any = € [a;, ai+1], is represented uniquely as z = /\,-a?- + )\i+1ai‘+1,
with A; + A\i+1 = 1. To this effect, we define the binary variable y;, i =
1,...,k — 1, which is equal to one, if a; < z < a;41, and zero, otherwise.
The problem is then formulated as follows:

k
min Z Aif(a;)
i=1

st A <wy, M <yYr—1,
Ai < yie1 + vi, 1=2,...,k—1,
k k—1
Z/\z = 1, Zyz = 17
i=1 i=1
Ai>0, y€ {071}‘

Notice that if y; = 1, then \; = 0 for i different than j or j + 1.

The previous collection of examples is by no means an exhaustive list
of possible modeling devices. They only serve to illustrate the power of
modeling with binary variables. In order to acquire more confidence, we
introduce some more examples.

Example 1.3 (The set covering, set packing, and set partitioning pl:Ob-
lems) Let M = {1,...,m}end N ={1,...,n}. Let M1, Ma,..., M, be a given
collection of subsets of M. For example, the collection might consist of all subsets
of size at least k. We are also given a weight c; for each set M; in the collection.
We say that a subset F of N is a cover of M if UjerM; = M. We say thaT: F
is a packing of M if M; N My = @, for all j,k € F, j # k. We say that F is a
Partition of M if it is both a cover and a packing of M (see Figure 1.2). The
Weight of a subset F' of N is defined as 3. - ¢;.
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Cover Partition Packing

Figure 1.2: (a) A cover, (b) a partition, and (c) a packing.

In the set covering problem we would like to find a cover F' of mini-
mum weight, in the set packing problem we would like to find a packing F'
of maximum weight, while in the set partitioning problem both minimization
and maximization versions are possible. In order to formulate these problems as
integer optimization problems, we introduce the m x n incidence matrix A of the
family {M; | j € N}, whose entries are given by

1, if 1€ M;,
Aij = .
0, otherwise.

We also define a decision variable z;, j = 1,...,n, which is equal to one, if j € F,
and zero, otherwise. Let x = (z1,...,Z»). Then, F is a cover, packing, partition
if and only if

Ax > e, Ax <e, Ax =e,
respectively, where e is an m-dimensional vector with all components equal to
1. More generally, given a nonnegative vector b, and a nonnegative matrix A,
packing, covering and partitioning type of formulations are of the form:

Ax>b, Ax<b, Ax=b,

x € {0,1}™.

Note that by defining variables y = e—x, we can transform a covering formulation
to a packing formulation and vice versa. For example, if x € {0,1}" satisfies
Ax > b, then Ay < Ae—b, y € {0,1}".

The previous formulation types encompass a variety of important problems
such as crew scheduling problems, vehicle routing problems, etc. (see Section 1.4).

A sequencing problem with setup times

A flexible machine can perform m operations, indexed from 1 to m. Each
operation j requires a unique tool j. The machine can simultaneously
hold B tools in its tool magazine, where B < m. Loading or unloading
tool j into the machine magazine requires s; units of setup time. Only
one tool at a time can be loaded or unloaded. At the start of the day,

m' Modeling techniques 7

n jobs are waiting to be processed by the machine. Each job i requires
multiple operations. Let J; denote the set of operations required by job i,
and assume for simplicity that for all 4, |J;| is no larger than the magazine
capacity B of the machine. Before the machine can start processing job 4,
all the required tools belonging to the set J; must be setup on the machine.
If a tool j € J;, is already loaded on the machine, we avoid the setup time
for tool j. If tool j € J; is not already loaded, we must set it up, possibly (if
the tool magazine is currently full) after unloading an existing tool that job
i does not require. Once the tools are setup, all |J;| operations of job i are
processed. Notice that, because of commonality in tool requirements for
different jobs and the limited magazine capacity, the setup time required
prior to each job is sequence dependent. We want to formulate an integer
optimization problem to determine the optimal job sequence that minimizes
the total setup time to complete all the jobs. We assume that at the start
of the day, the tool magazine is completely empty. We define decision
variables that capture the job sequence:

1, if job i is the rth job processed,
Zip = .
0, otherwise.

In addition, we define decision variables that describe the magazine setups:

_ 1, if tool j is on the magazine, while the rth job is processed,
Yir 0, otherwise.

We also let y;0 = 0, for all j, which represents the fact that we are starting
with an empty magazine. Since every job needs to be processed,

n
inr = 17 Vv i.
r=1

Since exactly one job will be processed at a time,

zn::cir =1, Vor.
=1

In order to process job %, all tools in the set J; need to be in the magazine.
Therefore, we have

Tir < Yjr, Vjed;, Vri.

Since the total capacity of the magazine is B, we have

m
Zyj, < B, vor
Jj=1



vve mcur a setup delay only if we load or unload a tool, which is the case
if yjr # y;,r—1 for some j. Therefore, the objective function is

m n
minimize E E Sj[yjr = Yjr—1].
j=1r=1

We obtain a binary optimization problem by defining a new decision vari-
able z;,., writing the objective function as

m n
minimize Z 8jZjr,
j=1r=1
and by introducing the constraints
Zjr 2 Yjr — Yjr—1, v g,
Zjr > Yir—1 — Yjr, v J,T.
The overall formulation becomes
m n
minimize Z Z 8§ 2y
Jj=1lr=1
subject to  zjr > y;, — Yjr—1, v g,
Zjr 2 Yjor—1 — Yjr, v j, T,
n
Z Tipr = 1, \ i,
r=1
n
Z Tip =1, Yo,
i=1
Tir < Yiry V] € Ji, A T,
m
Z yjr S B, \4 r,
=1

Tir, Yjr, 2jr € {0,1}.

1.2 Guidelines for strong formulations

In linear optimization, a good formulation is one that has a small number
n, m of variables and constraints, respectively, because the computational
complexity of the problem grows polynomially in n and m. In addition,
given the availability of several efficient algorithms for linear optimization,
the choice of a formulation, although important, does not critically affect
our ability to solve the problem. The situation in integer optimization is
drastically different. Extensive computational experience suggests that the
choice of a formulation is crucial. In this section, we provide guidelines for

arriving at strong formulations. The key concept we introduce is that of a
linear relaxation.

Definition 1.1 Given a mixed integer optimization problem
minimize c’x + d'y
subject to Ax + By =Db,
x,y 20,
xeZ",
its linear relaxation is defined as
minimize c¢x + d'y
subject to Ax + By =b,
x,y 20,

where the requirement that x is a vector of integers is relaxed. If the
integer variables x; are further restricted to be either 0,1,...,U, then
in the linear relaxation, x; takes values between 0 and U.

Note that if an optimal solution to the relaxation is feasible for the
mixed integer optimization problem, it is also an optimal solution to the
latter.

Example 1.4 (The facility location problem revisited) In Example 1.2,
we presented an integer optimization formulation of the facility location prob-
lem. Let us consider the following alternative formulation [aggregate facility
location formulation (AFL)] :

n m n
minimize E ijj“}'g E dijxij

j=1 i=1 j=1
n
subject to z;x” =1, Y i, (12)
i=
m
i=1

0<wj; <1, y; €{0,1}.

Notice that the constraint ZZ’;I xi; < my; forces x;; to be zero whenever y; = 0,
but allows Zi; to be different from zero if y; = 1. Therefore, this constraint is
€quivalent to the constraints zij < yj, ¢ = 1,...,m, in the original formulation.
For this reason, the set of feasible solutions and the optimal cost is the same
for both formulations. Notice, however, that the aggregate formulation (1.2) has

"M+ 7 constraints, while the original formulation (1.1) had m + mn constraints.

»
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Figure 1.3: The two polyhedra Prr and Parr, contain exactly
the same set of integer solutions.

In order to compare the two formulations, let us consider their correspond-
ing linear relaxations, in which we replace the integrality restrictions y; € {0,1}
by 0 < y; < 1. We then define the following two polyhedra, which are the feasible
sets of the two relaxations:

{ (x,y)

Pry,

Il

n
_;- Tij = 1, v i,
Jj=1

Zij < Yj» v i’j,

n
E Tij = 1, V i,
j=1

m
Z-'L'ij <my;, V3,

=1

PprL = {(x, y)

OS.’E«,‘J'SI, OSy]‘Sl}.

Clearly, Pr, C ParL and the inclusion can be strict (Exercise 1.16). In other
words, the feasible set of the linear relaxation of formulation (1.1) is closer to the

set of integer solutions than the linear relaxation of formulation (1.2) (see Figure
1.3).

Let Zip be the optimal cost of the integer optimization problem, and let Zrr
and ZarL be the optimal costs of the two linear relaxations we have introduf:ed.
Since PrL C ParL, it follows that ZarL < ZpL. Moreover, ZrL < Zrp, since
an optimal solution to the integer optimization problem belongs to Prr. To
summarize,

ZarL < ZrL < Z1p.
We next discuss the implications of this ordering. Enumerative methods such
as branch and bound methods discussed in Section 11.1 for solving integer mini-
mization problems depend on the availability of lower bounds such as Zrr. The
sharper the bound, i.e., the closer it is to Zip, the better these methods behave.

Consider, for example, an objective function such as the one depicted in
Figure 1.3. For this objective function, the optimal solution over the polyhedron
Prr, corresponds to point A in the figure, and is integer. By the previous inequal-
ities, solution A is indeed the optimal solution to the facility location problem.
So, in this case, we have solved the integer optimization problem by just solving a
linear optimization problem. On the other hand, for the same objective function,
the optimal solution over the polyhedron Pary is point B, which is fractional.

Thus, formulation (1.1) is preferable to formulation (1.2), despite the fact
that (1.2) has a significantly smaller number of constraints.

What is then an ideal formulation of an integer optimization problem?
Let F = {xl, e, xk} be the set of feasible integer solutions to a particular
integer optimization problem. We assume that the feasible set is bounded
and, therefore, F is finite. We consider the convex hull of F:

k k
COIlV(]:)= {Z/\,xz Z/\Z=1, )\,ZO}
=1

i=1
The set conv(F) is a polyhedron that has integer extreme points. Further-
more, the feasible set P of any linear relaxation satisfies conv(F) C P. If
we knew conv(F) explicitly, i.e., if we could represent conv(F) in the form
conv(F) = {x | Dx < d}, we could solve the integer optimization problem

minimize c'x

subject to x € F,
by finding an extreme point solution to the linear optimization problem

minimize c¢'x

subject to x € conv(F).

Given our ability to solve linear optimization problems efficiently, it
is then desirable to have a formulation, whose linear relaxation is indeed
the convex hull conv(F) of the integer feasible solutions (see Figure 1.4).
Unfortunately, this is often difficult. In light of this, we strive for a com-
Promise whereby we attempt to come up with a polyhedron that closely
approximates conv(F). This leads to the central message of this chapter.
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Figure 1.4: The convex hull of the integer feasible solutions to
the facility location problem.

The quality of a formulation of an integer optimization problem
with feasible solution set F, can be judged by the closeness of the feasible
set of its linear relaxation to the convex hull of F. In particular, consider
two formulations A and B of the same integer optimization problem. If we
denote by P4 and Pp the feasible sets of the corresponding linear relax-
ations, we consider formulation A to be at least as strong as formulation
B if

Py C Pg.

Let us illustrate this message in an example.

Example 1.5 (The pigeonhole principle)

The pigeonhole principle is a central proof method in combinatorics and states
that we cannot place n+ 1 pigeons into n holes in such a way that no two pigeons
share the same hole. Let us first write a formulation of this problem. Let Tij
be one, if pigeon 4 occupies hole 5, i =1,...,n+1and j=1,.. .,n, and, zero,
otherwise. We consider the following two formulations of the problem. The first
is

n
inj:l’ i=1,...,n+1,
j=1

(1.3)
Tij+xk; <1, j=1,...,n,i#k, i,k=1,...,n+1,

zi; € {0,1}, i=1,...,n+1, j=1,...,n,

l and the second is given by

n
Yay=1, i=1,...,n+1,
j=1

nt1 (1.4)
inng j=1,...,n,
=1

zi; €{0,1}, i=1,...,n+1, j=1,...,n

Clearly the pigeonhole problem is infeasible. Note, however, that the linear
relaxation of problem (1.3) is feasible as the solution x;; = 1/n satisfies all the
constraints, while the linear relaxation of problem (1.4) is infeasible. It turns out
that enumerative approaches based on solving the linear relaxation of problem
(1.3) require an almost complete enumeration of all the integer solutions, while
problem (1.4) detects infeasibility immediately by solving the linear relaxation.

1.3 Modeling with exponentially many
constraints

In this section, we demonstrate through examples that strong formulations
and, in particular, the convex hull of integer feasible solutions, may in-
volve an exponential number of linear inequality constraints. However, this
does not necessarily prevent the efficient solution of the linear relaxation of
such problems, as they can often be solved by cutting plane methods (see
Chapter 5).

The minimum spanning tree problem

Let G = (V, E) be an undirected graph with node set V (|V| = n) and
edge set E (|E| = m). Every edge e € E has an associated cost c.. The
cost of a tree is simply the sum of the costs of the edges in the tree. The
minimum spanning tree problem asks for a spanning tree (an acyclic, con-
nected subgraph of G) of minimum cost. Tree optimization problems arise
in the design of transportation, communication, and computer networks,
since at the very least such networks should be connected. Our goal in this
example is to illustrate the effectiveness of alternative formulations and to
learn new principles for deriving strong formulations.

In order to formulate the problem, we define for each e € E, a variable
Te which is equal to one, if edge e is included in the tree, and zero, otherwise.
Since a, spanning tree should have n — 1 edges, we introduce the constraint

E e =n — 1.
ecE

MOreover, the chosen edges should not contain a cycle. It can be shown
(Exercise 1.17) that this is guaranteed if for any nonempty set S C V, the



number of edges with both endpoints in S is less than or equal to |S| — 1. F ' ( M
For any S C V, we define ' S 5

B(S)={{i,j} € Eli,j € 5},
and we can express this set of constraints as o

! W
Y oz <|S|-1, ScCV,85#£0,V.
e€E(S)
7
This leads to a formulation of the minimum spanning tree problem:
(- J
minimize Z CeTe
e€FE
subjectto S @, = n-—1, Figure 1.5: Let S = {1,2,4,7}. Then, §(S) = {{z, 3}, {4,5},
ceB {7,8}}, and B(S) = {{1,2}, {1,4}, {2,4}, {4,7}, {1, 7}}.
erSISI_L ScV, S#0,V,

e€E(S)

ze € {0,1}. Theorem 1.1 The following properties hold.
This formulation is called the subtour elimination formulation, since (a) We have P sub C Feut, and there exist examples for which the
it contains constraints that eliminate all subtours (cycles). We denote the inclusion is strict.
feasible set of the linear relaxation of this formulation by Ps,p, where we (b) The polyhedron P,y can have fractional extreme points.

replace the constraint z. € {0,1} with 0 < z. < 1. Notice that the subtour

elimination formulation has an exponential number of constraints, namely

2" — 1. Proof.
The subtour elimination formulation uses the definition of a tree as a (a) For any set S of nodes, we have
subgraph containing n — 1 edges and no cycles. Using an alternative, but
equivalent definition, a tree is a connected graph containing n — 1 edges. E=E(S)UsS)UEV\S).
Given a subset S of V, we define the cutset §(5) (see also Figure 1.5) by
Therefore,
§S)={{i,j}e Eli€s, j¢S}. Dot D met Y ze= e

e€E(S) e€cE(V\S) ecd(S) e€E

Note that 6({z}) is the set of edges incident to . We can then express the
({z}) & p For x € P,y and for S # @, V, we have

connectivity requirement in terms of the constraints

S z>1, SCV,S#£0,V. > w81,
e€3(S) e€E(S)
and

We call the resulting formulation the cutset formulation, and we denote
the feasible set of its linear relaxation by Peu;. Both formulations have an Z ze < [V\ S| - 1.
exponential number of constraints. Are these formulations equally strong? e€E(V\S)
We show that the subtour elimination formulation is stronger than the cut- Since
set formulation. The proof demonstrates how we can compare alternative Z Te=n—1,
formulations of discrete optimization problems. ccE




(a) (b)

Figure 1.6: An example of a graph, in which a minimum span-
ning tree has cost 2, while the cost of an optimal solution over Pey
is 3/2. (a) The cost coefficients. (b) An optimal solution x* over
P cut-

we obtain that

Z Te 2 1,

e€d(S)

and therefore x € Pey;.

Consider the example in Figure 1.6(a). The solution x* shown in
Figure 1.6(b) belongs to Py, but it does not belong to Psyb, since the
edges in E(S) for S = {2,4,5} have total weight 5/2, while the constraints
defining Pyyp, dictate that ) . B(s) Te < 2. The example shows that the
inclusion may be strict.

(b) In order to show that the polyhedron P.,; may have fractional extreme
points, we use the objective function shown in Figure 1.6(a), under which
the unique optimal solution over Peyt is x* shown in Figure 1.6(b). This
establishes that this unique fractional solution with a cost of 3/2 is an
extreme point of P.y;. O

In Theorem 1.1, we have shown that the cutset formulation is weaker
than the subtour elimination formulation. In addition, in Section 3.2 we
will show that Psup = conv(F), i.e., the polyhedron Py, is a representation
of the convex hull of the set F of vectors corresponding to spanning trees.

According to the principle regarding strong formulations, the subtour
elimination formulation is a strong one. This seems somewhat counterin-
tuitive, as the formulation involves an exponential number of constraints.
Does this prevent us from optimizing over the feasible set Py, of the linear
relaxation efficiently? In Section 5.4, we will see that we can optimize over
Psup efficiently both theoretically and practically.

The traveling salesman problem

Given an undirected graph G = (V, E) and‘c‘osts ce for every edgg e € E, the
objective is to find a tour (a cycle that visits all nodes) of minimum Fost.
In order to model the problem, we define for every edge e € £ a varle.xble
z. equal to one, if edge e is included in the tour, and zero, otherwise. Since
each node must participate in two edges of the tour, we have

Z Te =2, ieV.

e€d({i})

Also, if S is a nonempty proper subset of V, there must be at least two
edges joining S to V' \ S, and we have

z Te > 2, ScV,S+0,V.
e€6(S)

A cutset formulation of the traveling salesman problem is as follows:

minimize Z CeTe
ecE )
subject to Z Te = 2, 1€V,
e€s({i}) (1.5)
Sowe>2  SCV,5#0V,
e€d(S)
z. € {0,1}.

Using ideas similar to the subtour elimination formulation of the minimum
spanning tree problem, we can also formulate the traveling salesman prob-
lem in terms of the following constraints:

> oz =2, i€V,
e€d({s})

> ome < |SI-1, ScV,S#+0,V,
ecE(S) .
z. € {0,1}.

Let Pigpeus and Pispsub be the polyhedra corresponding to the linear relax-
ations of these two formulations. It turns out that the two formulations are
equally strong, i.e., Pispeut = Prspsub (Exercise 1.20).

Exercise 1.21 deals with a different formulation of the variant of the
traveling salesman problem that involves a directed graph. This formulation
has a polynomial number of constraints, but it is not as strong as the
natural extension of the cutset formulation to directed graphs, which has
an exponential number of constraints.
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Figure 1.7: An example of a graph, in which an optimal match-
ing has cost L+2, while the cost of the optimal solution over Pyegree
has cost 3. (a) The cost coefficients. (b) An optimal solution over
P, degree-

The perfect matching problem

We have an even number n of persons that need to be matched into pairs
in order to perform a certain job. If person 7 is matched with person j,
there is a cost of ¢;;. A perfect matching is a pairing of persons, so that
each individual is matched with exactly one other individual. The goal
is to find a perfect matching that minimizes the total cost. We represent
the set of people by an undirected graph G = (V, E) where V is the set of
individuals, and the cost of edge e = {i,5} is c.. If {1,5} ¢ E, this indicates
that 7 and j cannot be matched. We let z. be one, if edge e = {3,5} is
selected, i.e., persons i and j are matched, and zero, otherwise. Then, the
perfect matching problem can be formulated as follows:

minimize Z CeTe
ecE
subject to Z ZTe = 1, 1€V,
eed({i})
z. € {0,1}.

We denote by Pgegree the polyhedron corresponding to the linear relaxation
of the above formulation.

Let F be the set of all vectors x corresponding to matchings. Figure
1.7 shows that Pgegree is not equal to conv(F).

The example in Figure 1.7 shows that the above formulation of the
problem is not particularly strong, as its linear relaxation is not equal to
the convex hull of vectors corresponding to matchings. A strengthening of

P > the formulation is to consider the class of inequalities

S ze>1,  ScV, S#V, [S|odd
e€d(S)
Notice that all vectors corresponding to matchings satisfy this inequality, as
in every set with an odd number of nodes, there should be at least one edge
Jeaving this set of nodes. Note that the example in Figure 1.7(b) violates
this set of inequalities, since for the set S = {1,2,3} we have ) . 5(5) Te =
0. We then consider the polyhedron defined by the constraints we have

introduced:
> ome=1 i€V,
ecs({i})

S w21, SCV, S#V, |S]odd,
e€d(S)

Pmatching = {X

0<z. <1, eGE}.
It turns out (see Section 3.4) that Prnatching = conv(F).

Cut covering problems

Our next example encompasses a large collection of integer optimization
problems including all problems we considered in this section. Its purpose
is to show the power and flexibility of modeling with an exponential number
of constraints. For further results see Section 12.2. Let G = (V, E), |[V|=n
be an undirected graph. Let f : 2V — Z, be a given set function and
D C V. Given costs c. > 0 for every e € E, we consider the following
family of discrete optimization problems known as cut covering problems:

minimize E Cee

ecE
subject to Z ze = f({i}), 1€ DCYV,
e€s({i}) (1.6)
> x> f(5), ScV,
e€s§(S)
ze € {0,1}.

Note that because of ce > 0, there exists always an optimal solution x to
problem (1.6) such that

F={ecE|z.=1}

is minimal with respect to inclusion, i.e., X — e is infeasible, for all k € F
(ex is a vector of zeros except that it has an one in the kth coordinate).
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(a) The minimum spanning tree by taking f(S) = 1, for all S # O,V
and D = Q.

(b) The traveling salesman problem by taking f(S) = 2, for all S # @,V
and D=V.

(c) The perfect matching problem by taking f(S) = 1, for every S # @,V
with |S] odd and D = V.

(d) The Steiner tree problem is defined as the problem in which a set
T C V of nodes needs to be connected by a tree possibly using nodes
in V\T. Assuming that c. > 0, for all e € E, the choice f(S) equal
one, if SNT # @,T, and f(S) equal zero, otherwise, and D = @
models the Steiner tree problem.

(e) The survivable network design problem is an important problem
arising in the design of communication, utility, and transportation
networks. Given costs c., for all e € E and requirements r;; for every
pair of nodes 4, j € V, the objective is to select a set of edges from F at
minimum cost, so that between every pair of nodes 7 and j there are at
least r;; paths that do not share any edges. By requiring that there are
at least r;; edge disjoint paths, the network has enough connectivity,
so that even if some edges in the network become unavailable, nodes
i and j could still be connected. The problem belongs to the class of
cut covering problems (Exercise 1.12) by letting D = @ and

f(S)= iesr’n%)%/\s Tij, S#@,V. (17

(f) The vehicle routing problem can be formulated as a cut covering prob-

lem (see Exercise 1.13).

We next show that we can sometimes strengthen the formulation of
a discrete optimization problem defined on an undirected graph by formu-
lating the problem in a corresponding directed graph.

Directed versus undirected formulations

The Steiner tree problem on an undirected graph G = (V, E) with non-
negative edge weights ¢, > 0, for all e € E and with a set T of terminal
nodes can be formulated as a cut covering problem (1.6) with f(S) =1, if
SNT # @, T and D = @. Specifically, the formulation is

minimize Z CeTe
ecE
subject to Z ze>1, VSCV, SNT #@,T, (1.8)
e€d(S)
ze € {0,1}.

— v wwveuusy proviems include (see also ’ “ We can enhance this formulation by considering a collection of subsets

Vi ..., Vp of V satisfying:
(a) ViﬂT#Q,i:—‘l,...,p.
() Ui =V -
Let 6(Vi,...,Vp) be the set of edges, whose endpoints lie in different
We consider the following formulation of the Steiner tree problem.

sets Vi-
minimize Z CeTe
e€E
subject to Z e 2 p—1, V15, Vo) (1.9)
e€s(Vi,..,Vyp)
B satisfying (a)-(c),
ze € {0,1}.

Given the undirected graph G = (V, E), we create a directed grgph
(V, A) by directing each edge {i,j} € F, thus cregting two arcs (4, 7), (J,1) €
A with cost ¢ij = cji > 0. In the directed Steiner tree problgm, the goal
is to find a minimum cost directed subtree that contains a dlrecte?l pat'h
between some given root vertex 1 (1 € T'), and every other terminal in
T. Of course, a directed subtree solution can be transformed back to an
undirected solution. The directed formulation of the Steiner tree problem

is as follows:
minimize Z CijYij
(,J)€A
subject to Y. %y = 1, SCV,1€8 T\S#0, (4
(1,5)€6H(S)
Yij + Yji <1, e={i,jl€E,
Yij € {07 1}7

where 61(S) represents the set of arcs (i, j) withi € S, and j g,f S.
Note that if y is feasible for problem (1.10), then by setting

Te = yij + Yji, for all e = {i, j} € B,

we obtain a feasible solution for problems (1.8) and (1.9), respectively.
Although all three formulations (1.8), (1.9) and (1.10) are equivalent as
integer optimization problems, this is not the case for their linear relax-
ations. Let Zgeiner(T); Zpartition(T), and Z Dgteiner(T) be the value of the
linear relaxations of formulations (1.8), (1.9) and (1.10), respectively.

We next show that

Zsteiner(T) < Zpartition(T) < Z-Dsteiner(T)»



that is, the directed formulation is at least as strong than both the undi-
rected formulation and the formulation based on Steiner partitions.

Since formulation (1.8) is a special case of formulation (1.9) corre-

sponding to p = 2, Zgeiner(T) < Zpartition(T). Without loss of generality
we assume that the root vertex 1 € Vi, and consider the inequalities

Z vij = 1, k=2,...,p.
(6,5)€8H (V\ Vi)

Adding these inequalities together with the inequalities y,; > 0 for j € Vi,
k=2,...,pand i€V, (i,j) € E, we obtain

Z (i +yj) 2 p— 1.
e€d(Va,...,Vy)

Setting . = yi; + y;i where e = {i,j}, we obtain that the solution
x is feasible for the linear relaxation of formulation (1.9), proving that
Zpartition(T) < ZDsteiner(T)'

There are examples such that Zsteiner(T') < Z Dgteiner(T'), that is, the
directed formulation is strictly stronger in terms of the bound it produces.
It does, however, have twice as many variables.

It is not true, however, that directed formulations are always stronger.

Consider for example the following directed formulation of the traveling
salesman problem.

minimize E CijYij

i,jEeV
subject to Z vi; =1, JjevV,
{il(i,5)eA}
Z vij =1, i€V, (1.11)
{3l(i.5)e A}
D w2l SCV,S$#0,
{(G.5)eAli€s, j¢S}
Yij € {0, l}, i, € V.

Starting with an undirected problem, we direct the problem, introducing
two arcs (z,7) and (j,4) for every edge e = {4, j}, such that cij = cji. We
denote by ZDtgp, Z1sp the values of the linear relaxation of the directed
formulation (1.11) and the undirected formulation (1.5). We have (Exercise

1.22) that ZDrtsp = Zrgp, that is, there is no benefit to passing to the
directed formulation.

4 Mo&eling with exponentially many vari-
ables

his section, we outline the column generation method of for.mula@ng
Il.l e optimization problems as integer optimization problems involving
discrete né)ntial number of variables. The general principle of formulating
an expo . with an exponential number of variables is to enumerate all par-
p.rOble;n:sible solutions, and represent any additional constraints in a set
sially e set covering or set partitioning type of formulation. The key idea

Pagﬁ:;g\’ye do not need to include all the variables a priori, but r'at.h.er t';o
:enerate new variables on demand. This method allows great flexibility in

modeling very complicated restrictions and ir.lterdependen‘cies that would
otherwise be very difficult to model. For this reason, thl‘S methc?dology,
which is called column generation, has had an important 1mpact. in prac-
tice. In Chapter 5, we discuss how such models can be solved. We illustrate
the method with several examples.

Example 1.6 The cutting stock problem .
Consider a paper company that has a supply of large rolls of paper, of Wldth
W. (We assume that W is a positive integer.) However, customer demand is for
smaller widths of paper; in particular b; rolls of width w;, i =1,2,. S .need to
be produced. We assume that w; < W for each 4, and that each w; is an integer.
Smaller rolls are obtained by slicing a large roll in a certain way, called a pattern.
For example, a large roll of width 70 can be cut into three rolls of width w; = 17
and one roll of width we = 15, with a waste of 4.

In general, a pattern, say the jth pattern, can be represented by a column
vector A, whose ith entry a;; indicates how many rolls of width w; are produced
by that pattern. For example, the pattern described earlier is represented by

the vector (3,1,0,...,0). For a vector (aij,...,am;) to be a representation of a
feasible pattern, its components must be nonnegative integers and satisfy

m

Z ajw; < W.

i=1

Let n be the number of all feasible patterns and consider the m x n matrix A
with columns A, j = 1,...,n. Note that n scales exponentially with m.

The goal of the company is to minimize the number of large rolls used while
satisfying customer demand. Let z; be the number of large rolls cut according
to pattern j. Then, the problem under consideration is ’

n
minimize sz
j=1

n

subject to Eaijmj =b;, i=1,...,m,
Jj=1
zj € Ly, ji=1...,n.

Note that the above formulation has an exponential (in m) number of
Variableg,



Example 1.7 Combinatorial auctions

With the explosion of the internet, auctions have increased in popularity in re-
cent years. Examples include auctions for airport time slots, wireless bandwidth,
railroad segments, delivery routes and rare stamps and coins, among others.

Let N be the set of bidders and M the set of m distinct items that are
being auctioned. For every subset of items S of M let b;(S) be the bid that
bidder j € N is willing to pay for the set S. It is natural to assume that if
SNT = @, then b;(S) +b;(T) < b;(SUT), i.e., bidder j is willing to pay more for
SUT than for sets S and T individually. For example, a collector of rare stamps
is willing to pay more for a complete collection than two incomplete collections.
For this reason, it is natural to allow bidders to bid on combinations of different,
items. Such auctions are called combinatorial auctions. The key question in
combinatorial auctions is to determine the winner of each item. We outline 5
method based on integer optimization that makes a fair determination possible.

Let 5(S) = max,en b;(S). For every set S C M we define the decision
variable £s to be one, if the highest bid on set S is accepted, and zero, other-
wise. The problem of determining the winners in a combinatorial auctions can
be formulated as follows:

maximize Z b(S)zs
scM

subject to Z zs <1, i€ M,
S:ieS
zs € {0,1}, Sc M.

The constraints in the above formulation ensure that no object in M is assigned
to more than one bidder, while the objective function maximizes the total revenue
from the auction. Note that the problem is a set packing problem involving 2!Ml
variables.

Example 1.8 The vehicle routing problem

An undirected graph G = (V, E) represents a transportation network. Node
t €V, for i # 1, represents customers with demand of d; units. An additional
node 0 represents the central depot. The travel costs are c, for every arce € E.
A company has m vehicles with capacities gx, k = 1,...,m that need to visit all
customers in order to satisfy demand. Each vehicle is to follow a route that starts
at a central depot (node 0), visits some customers, and returns to the depot. We
assume that the demand of each customer (a) can be carried by at least one single
vehicle, and (b) cannot be divided into several vehicles. The basic vehicle routing
problem is the problem of constructing routes for the vehicles starting and ending
at the depot that minimize the total transportation cost.

Vehicle routing problems encountered in practice often involve additional
requirements: (a) Each customer can only be visited within certain time windows;
(b) In addition to delivery of items, the problem may also involve collection of
items from the customer; (c) There may be multiple depots, multiple type of
items, and loading and unloading times.

In order to model such problems, we start by enumerating feasible partial
tours that satisfy all the restrictions. Note that because we use enumeration, we
can model very complicated restrictions. Let z;, j =1,...,N be one, if partial
tour j is used, and zero, otherwise. Clearly N is exponential in [V|. Let a;; be

if node 7 is visited in partial solution j. Let c¢; be the.cost of Partial tour
(?ntg.rllce every node needs to be visited exactly once, the vehicle routing problem
.n lbe formulated as a set partitioning problem as follows:
cal

minimize c¢'x
subject to Ax=ce,
x € {0,1}".

1.5 Summary

The main message of this chapter is that strong formt%lations are centllj:;a,l tc;
being able to solve integer optimization prf)bl(?ms eﬁiaently. The }?ua ity o
a formulation is judged by the closeness of its linear relaxatl.on to the f:onvleix
hull of integer feasible solutions. However, §trong ff)rmulatlons occ.asmnaj y
require an exponential number of constraints. Flgallyj, formula‘mong gl}\ie
another view of the complexity of a discrete optimization problem, in 1;) 1e
sense that for problems that are efficiently solvab.le, the strongest possible
formulations (convex hull of integer feasible solutions) are often known. .

For example, the description of the convex hull of the set of all matc li
ings and all spanning trees is explicitly known. In (?ontrast, the convex hu.
of the set of integer feasible solutions to the travehng salesman problen} is
not known. It is known that both the minimum spanning tree and ma’cchlpg
problems are efficiently solvable. However, there is no known polynomial
time algorithm for the traveling salesman problem. Th}s suggestg that our
ability to find the strongest possible formulations of a dlsc'ret(? optimization
problem (the convex hull of all integer feasible solutions) 1s.d1rectly related
to our ability to solve it efficiently. In a sense, the com;.)lexn:y'of a problem
is characterized by our ability to construct a formulation, with a polyno-
mial number of variables, whose linear relaxation is the convex hull of all
integer feasible solutions.

1.6 Exercises

Exercise 1.1 (Disjunctive constraints) Suppose .the'xt we are given m con-
straints ajx > b;, ¢ = 1,...,m, but without the restriction a; > 0. Mode.zl the
requirement that at least k of them are satisfied. Assume .that there exists a
number « such that ajx > for s = 1,...,m, and for all feasible x.

Exercise 1.2 (Selection of the dream team) The coach of the national
basketball team is faced with the decision of selecting 12 players for the upcom-
ing international tournament. He has limited his final selection .to. 20 players,
P1,...,p20. For each player, the coach has collected several 'statlstlcs that can
be summarized as follows. His rebounding average r;, his ass.lsts average a;, his
height hi, his scoring average s;, and his overall defense ability d;. The play-
ers have been divided into four broad categories: play makers (PM) (p1,...,ps),



F‘ ; Year
shooting guards (SG) (pa,...,p11), forwards (F) (po,-..,p1s), and centers (C)

(p16,---,P20). Notice that there are players that can be used in multiple roles
(for example player ps can be used both as a play maker and a shooting guard).
Players p4, ps, p15, p20 play in the NCAA (college level), while all of the rest play
in the NBA (professional level). For balance purposes, the team should consist
of at least 3 play makers, 4 shooting guards, 4 forwards, and 3 centers, which
implies that some players with dual roles should be selected. In addition, at least
2 players from the NCAA should be selected, while the mean rebounding, assists,
scoring average, height, and defense ability should be at least 7, a, s, h, d, respec-
tively. The problem is further complicated by the fact that there are compatibility
problems among some of the players. Player ps has declared that if player pg is
selected, then he does not want to be in the team. Also, players ps and pig can
only be selected together as they play in the same team for years and feel that
they are much more effective together. Finally, at most 3 players from the same
team should be selected, so that the coach is not accused of favoritism (players
p1,P7,P12,P16 play for the same team). Faced with these difficulties, the coach
has decided that he would like to maximize the scoring average, while satisfying
the various constraints. Formulate the problem that the coach is facing as an
integer optimization problem.

Exercise 1.3 (Playing times for the players in the dream team) This is
a continuation of Exercise 1.2. After some careful thought, the coach would also
like to decide how much play time to give to each player as some of these players
in the initial list of 20, although extremely talented, were returning from long
injuries and some were aging. For various reasons (injury, age) each player has
an upper bound u; on the average number of minutes he can play. In international
tournaments, the duration of a game is 40 minutes. The coach has decided that
there were two team compositions that he will use in the tournament depending on
the type of opponent and circumstances in a game: (PM, SG, SG, F, C) or (PM,
SG, F, F, C). Looking at the schedule, he predicts that these two schemes will be
used equally in the tournament. Therefore, he realizes that the average play time
of play makers would be 40 minutes, shooting guards 60 minutes, forwards 60
minutes, and centers 40 minutes. Formulate the combined problem of selection
and allocation of average play time in order to maximize the scoring average.

Exercise 1.4 An airline operates a fleet of 15 jet aircraft, all equipped with
the JET32 engine. The airline performs its own engine related repairs and main-
tenance at its repair facility. The maintenance director is reviewing the spare
parts ordering and stocking policy for the next three years. The JET32 engine
consists of 4 main modules, A, B, C, and D. When planes come in for repairs,
sometimes the entire engine must be replaced because of extensive damage and
wear. More often, however, only certain modules need replacement. The follow-
ing table contains the forecasted requirements for individual engine modules and
complete engines for the next 3 years. The airline places orders for complete en-
gines and modules at the beginning of the year with JET Inc., the manufacturer
of the JET32 engine. The following table shows the projected prices for engines
and modules that JET Inc. might charge in the next three years.

Note that complete engines cost less than the total cost of buying one
module of each type. Assume that the cost of “cannibalizing,” i.e., breaking a
complete engine into four individual modules, is negligible compared to the cost

Module | Module | Module | Module | Complete
A B C D Engine
1 5 4 4 2 1
2 2 1 1 7 0
3 3 4 3 0 2
Table 1.1: Forecasted engine/module requirements.
Year | Module | Module Module | Module | Complete
A B C D Engine
1 0.5 2.0 5.0 1.0 7.8
2 0.6 2.2 5.5 1.1 7.5
3 0.7 2.5 6.0 1.3 7.0

Table 1.2: Forecasted engine/module prices.

of these modules. The mix of engines and modules that the airline orders from
JET Inc. must, therefore, account for the economies in ordering complete engines.
Assuming that the airline does not have any inventory of modules or engine's.ln
hand, formulate an integer optimization problem to determine the order quantities
for the next 3 years, while minimizing the total cost of purchases. Assume that
there are no inventory carrying costs.

Exercise 1.5 (Plan for a move) Suppose you are planning to move to your
new house. You have n items of size a;, j = 1,...,n, that need to be moved. You
have rented a truck that has size Q and you have bought m boxes. Box 7 has size
b;, i = 1,...,m. Formulate an integer optimization problem in order to decide
whether the move is possible. Note that you can put multiple items in the same
box and size is the only criterion determining if an item can be put into a box.

Exercise 1.6 (Separable piecewise nonlinear optimization) Consider the
separable nonlinear optimization problem

n
minimize Z fo,i(z5)

j=1
n
subject to Z fij(z) <bi, i=1,...,m,
j=1
0< z; < uy, j=1...,m,
where the functions fi ;(z;), i = 0,1,...,m, j = 1,...,n are continuous, piece-

wise linear with at most u pieces. Propose an integer optimization formulation
to the separable nonlinear optimization problem.

Exercise 1.7 (Data mining)

(a) We are given points (z;,a:), ¢ = 1,...,m, where x; € R™ and a; € {0, 1},
which indicates the category that point @; belongs to. We would like to



decide whether it is possible to separate the points x; by a hyperplane
¢’z = 1 such that all points of category 0 satisfy ¢’z < 1 and all points of
category 1 satisfy ¢’ > 1. Propose a linear optimization problem to find
the vector c.

(b) We are given points (Z;,¥i), ¢ = 1,...,m, where z; € R and y; € R. We
would like to find a hyperplane ¢’z = 1 and a partition of the sets of points
into two sets with the following properties:

(i) for all points (x:,y:) such that ¢/z; < 1 we want to detect a vector

3, so as to minimize
Z Iyz - ﬂIIXZI

{i:e’x;<1}

(i) for all points (zi,¥:) such that ¢’z; > 1 we want to detect a vector

B5, so as to minimize
Z lyi — Boxal.
{i:e/%x;>1}
Propose an integer optimization problem to detect the vectors c, B4,
Bs.

Exercise 1.8 (Constructing piecewise quadratic approximations) Given
n points with coordinates (:,%:), i = 1,2,...,n, such that 1 < z2 < ... < zp,
we would like to construct a piecewise quadratic approximating function f(z) to
the points y;, i = 1,2,...,n consisting of n — 1 pieces. The function f(z) is as

follows: )
a1z°+biz+c, 1 <z < x2,

2
azz”+ b2 x +co, z2 <z < zx3,

flz) =

2
An-1%° +bn1 T+ cn-1, Tn-1<z< 20,

Our objective is to select the coefficients (as, bi,c;), i =1,2,...,n—1 so that the
function f(z) is continuous and convex. Recall that a function f(z) is convex if
its derivative f’(z) is nondecreasing.

(a) Suppose we are interested in minimizing the error

D lyi — flzi)l-

i=1
Propose a linear optimization model to accomplish this.

(b) Instead of constructing an approximating function f(z) consisting of n — 1
pieces, we can construct a piecewise quadratic approximating function g9(x)
consisting of k — 1 pieces, k < n. The function g(z) is a follows:

az®+biz+a, 21 <z <z
a2 % + b2 T+ c2, 22 < < 23,
9(z) =

2
-1 % +br—1 T+ ko1, 2k-1 <z < 21,

Tec. 1. Exercises 29

where z1 = z1 and zx = zn. The other points 22, zs,...,2x—1 can be
chosen among the set {z2,...,zn—1}. We would still like to impose the
condition that g(z) is continuous and convex. Suppose we are interested in
minimizing the error )_©_, |ys —g(z:)|. Propose a linear integer optimization
model to accomplish this.

Exercise 1.9 (Linear regression and extensions) In the linear regression
model, we assume that there are d factors Xi,..., Xy that affect the output
variable Y in a linear way, ie., there are coefficients fo and B = (61, ..., Ba)’

such that
Y =p+BX+e

where € is a normally distributed random variable with mean zero and standard
deviation o. We are given data (yi,Xi), i = 1,...,n, where y; € R and x; € R,
The values ¥s, Xi, ¢ = 1,...,n are realizations of the output Y and the factors X.
We propose several ways to find the coefficients Go and 8 = (61, . -, Ba)’-

(a) The classical least squares problem is:

n
minimize Z(yl — fBo — ,lei)2~
i=1
Find explicit expressions of the optimal solutions for F; and 8.

(b) Consider the problem

n
minimize Z lyi — Bo — B'x),
i=1
and propose an efficient way to solve it.

(c) In this part we consider the factor selection problem, in which we stipulate
that only k& < d factors Xi,...,X4 affect Y. Extend your formulation
in part (b) to model the additional constraint that up to k out of the d

coefficients 31, ..., 34 have nonzero values.
(d) Given n = 2k + 1 numbers a;, i = 1,...,n median (a1, ...,ay) is that
number a among a;, i = 1,...,n with the property that k of the a;’s are

larger than or equal to a, and & of the a;’s are smaller than or equal to a. For
example, median (3,5,—2,1,7) = 3. Compared to the mean, the median
is much less sensitive to outliers, and thus more “robust”. Formulate the
robust linear regression problem for n = 2k + 1:

minimize median (jy1 — Bo — B'x1l,- -, |[yn — Bo — B'xn|)
as an integer optimization problem.

Exercise 1.10 (A production and distribution problem) A company pro-
duces a set of K products at I plants. It then ships these products to J market
Zones. For k = 1,...,K,i=1,...,I,and j = 1,...,J, the following data are



30 Chap. 1  Formulations

given:
v, = variable cost of producing one unit of product k at plant ¢,
Cijr = cost of shipping one unit of product k from plant i to zone 7,
fix = fixed cost associated with producing product k at plant 4,
M;;x = maximal quantity of product k& produced at plant 1,
mix = minimal quantity of product k that can be produced at plant ¢,

if plant i produces a nonzero quantity,

¢k = capacity of plant 4 used to produce one unit of product k,

Q: = capacity of plant 3,

djx = demand for product k at market zone j.

(a) Formulate the problem of minimizing the total cost of production and trans-
portation that the company is facing, as an integer optimization prob-
lem. Indicate how your model can incorporate the following additional
constraints.

(b) No plant may produce more than K; products.
(c) Every product can be produced in at most I, plants.

(d) For a particular product ko, plant 3 must produce it if neither plant 1 nor
plant 2 produce it.

(e) Each market zone must be sourced by exactly one plant for all products.

Exercise 1.11 (A dynamic single item lot sizing problem) We consider
the production of a single product over T' periods. If we decide to produce at
period ¢, a setup cost c; is incurred. For t = 1,...,T, let d; be the demand
for this product in period ¢, and let p;, h; be the unit production cost and unit
storage cost (per period), respectively.

(a) Formulate an integer optimization problem in order to minimize the total
cost of production, storage, and setup.

(b) Suppose we allow demand to be lost in every period except for period 7,
at a cost of by per unit of lost demand. Show how to modify the model to
handle this constraint.

(c) Suppose that production can occur in at most five periods, but no two such
periods can be consecutive. Show how to modify the model to handle this
option.

Exercise 1.12 (The survivable network design problem) Show that Egs.
(1.7) correctly model the survivable network design problem.

Exercise 1.13 (The vehicle routing problem) An undirected graph G =
(V, E) represents a transportation network. Node i € V, for i # 1, represents
customers with demand of b; units. The travel costs are d. for every arc e € E.
A company has m vehicles, each of capacity @, that need to visit all customers in
order to satisfy demand. Each vehicle is to follow a route that starts at a central
depot (node 1), visits some customers, and returns to the depot. Suppose that
the demand of each customer can be carried by a single vehicle, ie., b; < @

Assuming that the demand of any customer cannot be divided into
hicles, formulate the problem of constructing routes for the vehicles

for all 7.

ral ve .
:;i: minimize the total transportation cost.

Exercise 1.14 (The fixed charge network design problem) We are given

irected graph G = (V, A) and a demand or supply b; for each i € V, such tl.lat
2 dlrecbl — 0. There are two types of costs: transportation costs ¢;; of shipping
ZieXni; from node i to node j, and building costs d;; of establishing a link (%, 5)
o een nodes i and j of capacity u;;. We would like to build such a network in
2:;:; to minimize the total building and transportation costs, so that all demand

is met. Formulate the problem as an integer optimization problem.

Exercise 1.15 (Job shop scheduling) A factory con;ists of m machines M,
..., My, and needs to process n jobs every day. Job j neec%s to be proces'sed
once by each machine in the order (M;(y,. .., Mj(m)): Machlm'e M; takes time
pij to process job j. A machine can only process one job at e? time, and once a
job is started on any machine, it must be processed to completion. The Ob:]eCtIVe
is to minimize the sum of the completion times of all the jobs. Provide an integer
optimization formulation for this problem.

Exercise 1.16 (Facility location) For the facility location problem, prove
that the inclusion Pry, C ParL can be strict.

Exercise 1.17 Let G = (V, E) be an undirected graph with n nodes. Show
that G is a tree if and only if the total number of edges is n — 1, and for any
nonempty set S C V, the number of edges with both endpoints in S is less than
or equal to |S] — 1.

Exercise 1.18 (A multicut formulation of the MST problem) Given an
undirected graph G = (V, E), with |[V| = n and |E| = m, consider a partition
of V into disjoint nonempty sets Co, C1, ..., Ck of nodes, whose union is V. Let
6(Co,C1,...,Ck) be the set of edges, whose endpoints lie in different sets C;. Let

0<z. <1, Za:e=n—1,
eeE

Z ze > k, for all k
e€58(Co,C1,..-,Ck)

Pmcul: = {XERM

and for all partitions Cop,C1,...,Ck of V}.

Prove that Prcut = Py, where

Psub={x€]Rm 0<z. <1, erzn—l,
eeE
Y @ <ISI-1, SCV,S;é@,V}.
e€E(S)



Exercise 1.19 (A directed cut formulation of the MST) Given an undi.
rected graph G = (V, E), with V] = n and |E| = m, form a directed graph
D = (V, A) by replacing each edge {i,5} in E by arcs (2,5), (4, %) in A. We select
anode r in V as the root node. Let Yi; = 1if the tree contains arc (i, j) when we
root the tree at node r (in other words the solution will be a tree with directed

edges away from the root). Let 5+ (S) be the set of arcs going out of S. Let

Picur = {XERmIOSXSea Te = Yij + Yjs, VEEE,

Zyezn—l, Z Ye 21, r€S, VS CV, yezo}.

ecA e€5+(s)
Prove that Py = Pyy,.

Exercise 1.20 (The undirected traveling salesman problem) For the
undirected traveling salesman problem, prove that

-Ptspcut = R:spsub .

Exercise 1.21* (The directed traveling salesman problem) Given a di-
rected graph G' = (V, A), with [Vl =n and |A| = m, a natural extension of the
traveling salesman formulation in Eq. (1.5), involves the constraints:

Z Yij =1, Jev,
{il(i,5)€ A}
Z Yij =1, 1€V,
{51(i,5)eA}
Yig > 1, SCV, 8#£0,V,

{(i,5)€Alies, j¢Sy
yije{()’l}’ i,jGV
Let F be the set of feasible solutions.

(a) Consider now the following set of (polynomially many) constraints:

Ui—uj'f—nyijgn—l, ('i,j)EA, Za]¢17

Z Yig =1, jevy,
{il(i,5)eA}

Z Yig = 1, L€ ‘/7
{5l(5,5)e A}

- Yi; € {0,1}, ,j €V

Let 7' be the set of feasible solutions. Prove that F = F'.

(b) Let Pisp_qcut and Pisp—polynomial be the polyhedra associated with the linear

relaxat_ions of the formulations corresponding to F and F’, respectively.
Prove that

Ptsp—dcut C Ptsp—polynomial,
and that the inclusion can be strict, i.e., the first formulation is stronger.
(c) Prove that Py gy # conv(F).
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i i d formulations for the trav-

ise 1.22 (Directed versus undirecte ' -

E?(erClslzsman 1()r0blem ) Let ZDrsp, Ztsp be the values of the hnear relax

eling S; the directed formulation (1.11) and the undirected formulation (1.5),
ations

respectively. Show that ZDrtsp = Ztsp.

i rcise: Facility Location) This exer-
Exercise li?,z:);nf Cl.zsnllgu::; llo.fll.a ;V}e‘l);fe given 20 possible facility locations that
cise refor tz%o }éustgmers. The fixed costs and the costs of servicing a cestomer
can set*” ific location are given in the file FL.dat. The file FL.prj describes the
from ¢ SI‘)eCI introduced in Example 1.2, while AFL.prj is the aggregate formula-
f(')rm‘tlzizoéluced in Example 1.4. We are solving the linear relaxations of both
tion 1 €
tions. ' '
fo(ran)ml;bolve the facility location problem unde}r the twg formulations. Which
formulation gives a better objective function value?
(b) Record the number of constraints and the number of veriz;bles under both
formulations. Which formulation has a smaller dimension?

(c) What can you observe about the optimal decision variables y?

(d) Relate your answers in parts (a)-(c) to what has been discussed in this
chapter. Which formulation is better?

1.7 Notes and sources

This chapter uses extensively material from Bertsimas and Tsitsiklis (1997),
Chapter 10.

1.1. The derivation of integer optimization models is more an art'than
a formal methodology. The journal Interfaces often pubhshee inter-
esting large scale discrete optimization models. Examp.les of integer
optimization modeling techniques can also be found in nearly all
textbooks about integer optimization. We refer, in particular to the
books Papadimitriou and Steiglitz (1982), Nemhauser and Wolsey
(1988), Williams (1978) and Wolsey (1998).

1.3. Edmonds (1971) has shown that the convex hull of the "%nteger feasi-
ble solutions to the minimum spanning tree problem is given by Psu.b.
The survey paper by Magnanti and Wolsey (1995) discusses meny‘dlf—
ferent formulations for tree related problems, and their applications
to discrete optimization. The formulation of the travelling salesman
problem with exponentially many constraints has been 1ntr0dueed
by Dantzig et al. (1954, 1959). More information on the traveling
salesman problem can be found in Lawler et al. (1985). Edmonds
(1965) provided a polynomial time algorithm for the matching p{‘Ob—
lem and showed that the convex hull of the integer feasible solutions
to the matching problem is given by Ppatching. For a textbook expo-
sition of matching algorithms we refer to Papadimitriou and Steiglitz
(1982), Nemhauser and Wolsey (1988), Cook et al. (1998) and Korte
and Vygen (2000). A thorough treatment of the theory of matchings
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can be found in Lovész and Plummer (1986). For an analysis and a

computational investigation of the directed versus the undirected for-
mulation for Steiner tree problems we refer to the papers by Chopra
and Rao (1994a,b). Cut covering problems have been considered in
Goemans and Williamson (1995a).

The cutting stock problem was introduced in Gilmore and Gomory

(1961). For a survey on combinatorial auctions see de Vries and C hapter 2
Vohra (2003).
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