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Discrete optimization problems arise in a great variety of contexts in sci­
ence, engineering and management. In such problems, we seek to find a 
solution x* in a discrete set F that optimizes (minimizes or maximizes) an 
objective function c(x) defined for all x E F. A natural and systematic 
way to study discrete optimization problems is to express them as integer 
optimization problems, which is exactly the emphasis of this book. 

In general, given matrices A E zm× n, B ε zm × k, and vectors b E 

zm, c E zn, d E 'l'}, the problem 

minimize c'x + d'y 

subject to Ax + By = b, 

XE Z뚜, y E iR't-, 

is the mixed integer optimization problem. Notice that even if there 
are inequality constraints, we can still write the problem in the above form 
by adding slack or surplus variables. If there are no continuous variables y, 
the problem is called the integer optimization problem. If furthermore, 
there are no continuous variables and the components of the vector x are 
restricted to be either zero or one, the problem is called the binary (or 
zero-one) integer optimization problem. Finally, it is customary to 
assume that the entries of A, B, b, c, dare integers. 

Integer optimization is a rather powerful modeling framework that 
provides great flexibility for expressing discrete optimization problems. On 
the other hand, the price for this flexibility is that integer optimization is 
computationally more demanding than linear optimization. In this chapter, 
we introduce general guidelines for obtaining strong integer optimization 
formulations for discrete optimization problems. We introduce modeling 
techniques, discuss what constitutes a strong formulation, and compare 
alternative formulations of the same problem. 

1.1 Modeling techniques 

In this section, we outline some modeling techniques that facilitate the for­
mulation of discrete optimization problems as integer and mixed integer 
optimization problems. In comparison to linear optimization, integer op­
timization is significantly richer in modeling power. Unfortunately, there 
is no systematic way to formulate discrete optimization problems, and de­
vising a good model is often an art, which we plan to explore through 
examples. 

Binary choice 

An important use of a binary variable x is to encode a choice between 
two alternatives: we may set x to zero or one, depending on the chosen 
alternative. 

r'"'"" 
Example 1.1 (The knapsack problem) We are given n items. The jth item 
has weight Wj and its value is Cj. Given a bound K on the weight that can be 
carried in a knapsack, we would like to select items to maximize the total value. 
In order to model this problem, we define a binary variable Xj which is one, if 
item j is chosen, and zero, otherwise. The problem can then be formulated aR 
follows: 

maximize ε CjXj 
J=l 

subject to ε 띠Xj::::; K, 
J=l 

Xj E {0, l}, γ j. 

Forcing constraints 

A very common feature in discrete optimization problems is that certain 
decisions are dependent. In particular, suppose decision A can be made 
only if decision B has also been made. In order to model such a situation, 
we can introduce binary variables x (respectively, ν) equal to one, if decision 
A (respectively, B) is chosen, and zero, otherwise. The dependence of the 
two decisions can be modeled using the constraint 

x::::: y, 

i.e., if ν = 0 (decision B is not made), then x = 0 (decision A cannot be 
made). Next, we present an example where forcing constraints are used. 

Example 1.2 (Facility location problems) Suppose we are given n potential 
facility locations and a list of m clients who need to be serviced from these 
locations. There is a fixed cost Cj of opening a facility at location j, while there 
is a cost 봐 of serving client i from facility j. The goal is to select a set of facility 
locations and assign each client to one facility, while minimizing the total cost. 

We define a binary decision variable yj for each location j, which is equal to 
one, if facility j is opened, and zero, otherwise. In addition, we define a variable 
¢η, which corresponds to the fraction of the demand of client i that is served by 
facility j. The facility location problem is then formulated as follows: 

minimize ε CjYj + ε ε dijXi1 

J=l i=l j=l 

SU 

Xij ::::; νj , 

γi, 
n ” 1 

l 
A 

( 

γ i,j, 

0 ::::; Xij ::::; 1, Yj E {0, 1 }, γ i, j. 

Here, the forcing constraint Xij ::::; yj captures the fact that if there is no facility 
at location j (νJ = 이, then client i cannot be served there, and we must have 
Zη =O. 
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Relations between variables 

A constraint of the form ε7=1 Xj :S: 1, where all variables are binary, impl"않 
that at most one잉f the variables 찍 can be one. Similarly, if the constraint 
is of the form εj=l 원 = 1, then exactly one of the variables Xj should be 
one. 

Disjunctive constraints 

Let x be a nonnegative vector representing a collection of decision variables. 
Suppose that we are given two constraints a'x 2': b and c'x > d, in which 
all of the components of a and c are nonnegative. We would고k~ to model 
a requirement that at least one of the two constraints is satisfied. In order 
to achieve this, we define a binary variable ν and impose the constraints: 

a'x 즈 νb, c'x 2': (1 - ν)d, ν E {O, 1}. 

More generally, suppose we are given m constraints a'.x > b;. i = 1.. m 

where 하 즈 0 for each i, and require that at least k ~f 퍼e퍼 are s~ti~fi~d. 
We can ach~eve this by introd띠ng m binary variables νμ i = 1, ,m, and 
the constramts: 

εYi 2 k, a~x 즈 biyi, νiE{O,l}, i=l, ,m. 

Restricted range of values 

~-l1ppose we want to restrict a variable x to take va떠lues in a set f n,, . n._ 1 
We can achieve this by in 
and the constr‘ aints 

X= εajyj, εYj=l, YjE{0,1}. 

Arbitrary piecewise linear cost functions 

Suppose we are interested to minimize an arbitrary piecewise linear. not 
necessarily convex, cost function. We will show that we can accom~lish 
this using binary variables. Suppose that a1 < a2 < ... < ak, and that 
we have a cont.inuous piecewise linear function f ( x) specified b; the points 
(ai, f(ai)) for i = 1, ... , k, defined on the interval [a1, ak] (see Figure 1.1) 
Then, any x E [a1, ak] and the corresponding value f(x) can be express:d 
in the form 

$=ε,\a., f(x) = ε>.if(ai), ε >.i = 1, >.1, .. , >.k 즈 0. 

r" ~ec. r;.r 1VlUUe1111g Lt:GlllllCJ ue:; i) 

f (x) 

O a1 a2 a3 a4 x 

Figure 1.1: A continuous piecewise linear cost function. 

The critical observation is that the choice of coefficients >.1, ... , >.k 
used to represent a particular x is not unique. However, it becomes unique 
if we require that at most two consecutive coefficients 시 can be nonzero. In 
this case, any x E [ ai, ai+ i], is represented uniquely as x = Ai ai + >.i+ 1ai+1, 
with Ai + >.i+1 = 1. To this effect, we define the binary variable Yi, i = 
1, ... , k 1, which is equal to one, if ai :::; x < ai+1, and zero, otherwise. 
The problem is then formulated as follows: 

k 

min ε >.if(ai) 

s.t. >.1 :::; νi, >.k :S: νk 1, 

Ai :S: Yi i +Yi, i = 2, ... , k 1, 
k k-1 

ε>.i = 1, ενi = 1, 

>.i 즈 0, Yi E {O, 1}. 

Notice that if Y} = 1, then Ai = 0 for i different than j or j + 1. 

The previous collection of examples is by no means an exhaustive list 
of possible modeling devices. They only serve to illustrate the power of 
modeling with binary variables. In order to acquire more confidence, we 
introduce some more examples. 

Example 1.3 (The set covering, set packing, and set partitioning prob­
lems) Let M = {1, ... , m} 1md N = {1, ... , n}. Let M1, M2, ... , Mn be a given 
collection of subsets of M. For example, the collection might consist of all subsets 
of size at least k. We are also given a weight c.i for each set M; in the collection. 
yYe say th따 a subset F of N is a cover of M if UjEFMJ = M. We say that F 
is a packing of M if MJ n Mk = α, for all j, k E F, j i- k. We say that Fis a 
Partition of M if it is both a cover and a packing of M (see Figure 1.2). The 
Weight of a subset F of N is defined as εJεF 딘· 
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Figure 1.2: (a) A cover, (b) a partition, and (c) a packing. 

In the set covering problem we would like to find a cover F of mini­
mum weight, in the set packing problem we would like to find a packing F 
of maximum weight, while in the set partitioning problem both minimization 
and maximization versions are possible. In order to formulate these problems as 
integer optimization problems, we introduce the m × η incidence matrix A of the 
family {Mi I j E N}, whose entries are given by 

1 i 

n U 

/’
l 
ι
、
,
l‘ 

--
η
 

Q if iEMj, 

otherwise. 

We also define a decision variable 찍, j = 1, ... , n, which is equal to one, if j E F, 
and zero, otherwise. Let x = (x1, ... , Xn). Then, Fis a cover, packing, partition 
if and only if 

Ax 즈 e, Ax :::; e, Ax = e, 

respectively, where e is an m-dimensional vector with all components equal to 
1. More generally, given a nonnegative vector b, and a nonnegative matrix A, 
packing, covering and partitioning type of formulations are of the form: 

Ax 즈 b, Ax :::; b, Ax = b, 

xE{O,l}”. 
Note that by defining variables y = e-x, we can transform a covering formulation 
to a packing formulation and vice versa. For example, if x E {O, 1}π satisfies 
Ax~ b, then Ay :=:; Ae - b, y E {O, l}n. 

The previous formulation types encompass a variety of important problems 
such as crew scheduling problems, vehicle routing problems, etc. (see Section 1.4). 

A sequencing problem with setup times 

A flexible machine can perform m operations, indexed from 1 to m. Each 
operation j requires a unique tool j. The machine can simultaneously 
hold B tools in its tool magazine, where B < m. Loading or unloading 
tool j into the machine magazine requires Sj units of setup time. Only 
one tool at a time can be loaded or unloaded. At the start of the day, 

Sec. 1.1 Modeling techniques 7 

n jobs are waiting to be processed by the machine. Each job i requires 
multiple operations. Let Ji denote the set of operations required by job i, 
and assume for simplicity that for all i, IJil is no larger than the magazine 
capacity B of the machine. Before the machine can start processing job i, 
all the required tools belonging to the set Ji must be setup on the machine. 
If a tool j E Ji, is already loaded on the machine, we avoid the setup time 
for tool j. If tool j E Ji is not already loaded, we must set it up, possibly (if 
the tool magazine is currently full) after unloading an existing tool that job 
i does not require. Once the tools are setup, all IJil operations of job i are 
processed. Notice that, because of commonality in tool requirements for 
different jobs and the limited magazine capacity, the setup time required 
prior to each job is sequence dependent. We want to formulate an integer 
optimization problem to determine the optimal job sequence that minimizes 
the total setup time to complete all the jobs. We assume that at the start 
of the day, the tool magazine is completely empty. We define decision 
variables that capture the job sequence: 

1 i 

n U 

f 
l 
l 
ι
1
 
l 
l 

、
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π
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if job i is the rth job processed, 

otherwise. 

In addition, we define decision variables that describe the magazine setups: 

1 i 

n u 

r -----T ·J 
”· if tool j is on the magazine, while the rth job is processed, 

otherwise. 

We also let νjO = 0, for all j, which represents the fact that we are starting 
with an empty magazine. Since every job needs to be processed, 

εZ션 1, γi 

Since exactly one job will be processed at a time, 

εXir = 1, γ r. 

In order to process job i, all tools in the set Ji need to be in the magazine. 
Therefore, we have 

Xir :::; Yjri 、예 j E Ji 、 、예 T、 i.

Since the total capacity of the magazine is B, we have 

εν'jr :::; B, γT 



arriving at strong formulations. The key concept we introduce is that of a 
linear relaxation. 

vve mcur a setup delay only if 따 교굶or unfo굶둠교~l which is ‘ the case 
if Yir =/=- Yi,r 1 for some j. Therefore, the objective function is 

ε ε Sj/ν'jr - νj,r-1/. mm1m1ze 
Definition 1.1 Given a mixed integer optimization problem 

c'x + d'y 

Ax+ By=h, 

x,y 즈 0, 

xEZπ’ 

mm1m1ze 

subject to 

We obtain a binary optimization problem by defining a new decision vari­
able Zjr, writing the objective function as 

εεSjZjr, mm1m1ze 

its linear relaxation is defined as 

c'x + d'y 

Ax+ By=b, 

x,y 2: 0, 

mm1m1ze 

subject to 
γ j,r, 

γ j,r. 

and by introducing the constraints 

Zjr 2: ν'jr - ν'j,r-l, 

Zjr 2: ν'j,r-l - ν'jr, 

where the requirement that x is a vector of integers is relaxed. If the 
integer variables Xj are further restricted to be either 0, 1, ... , U, then 
in the linear relaxation, Xj takes values between 0 때d u. 

Note that if an optimal solution to the relaxation is feasible for the 
mixed integer optimization problem, it is also an optimal solution to the 
latter. 

γ j,r, 

γ j,r, 
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The overall formulation becomes 

mm1m1ze 

Ex없nple 1.4 (The facility location problem revisited) In Example 1.2, 
we presented an integer optimization formulation of the facility location prob­
lem. Let us consider the following alternative formulation [aggregate facility 
location formulation ( AFL)] : 

、녕 i 、

Vr, 

εXir = 1, 

εXir = 1, 

subject to 

(1.2) 
、d i 

γ j, 

Notice that the constraint ε::i Zη :S mw forces Xij to be zero whenever Yi = 0, 
but allows Xη to be different from zero if YJ = 1. Therefore, this constraint is 
equivalent to the constraints zη :S YJ, i = 1, ... , m, in the original formulation. 
For this reason, the set of feasible solutions and the optimal cost is the same 
for both formulations. Notice, however, that the aggregate formulation (1찌 has 
m + n constraints, while the original formulation (1.1) had m + mn constraints. 

ε CJYJ + ε ε dηXij 

εZη= 1, 

εXij :S mν3 ’ 

0 :S Xij :S 1, νJ E {O, 1} 

γj E Ji, V r,i, Xir :5 ν'jr, 

ενjr :5 B, m1mm1ze 、에 T、

subject to 
Xir, ν'jr,Zjr E {0,1}. 

.......__ 

Guidelines for strong formulations 

In linear optimization, a good formulation is one that has a small number 
n, m of variables and constraints, respectively, because the computational 
complexity of the problem grows polynomially in π and m. In addition‘ 
given the a때lability of several e퍼cient algorithms for linear optimization: 
the choice of a formulation, although important, does not critically affect 
our ability to solve the problem. The situation in integer optimization is 
drastically different. Extensive computational experience suggests that the 
choice of a formulation is crucial. In this section, we provide guidelines for 

1.2 
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Figure 1.3: The two polyhedra PFL and PAFL contain exactly 
the same set of integer solutions. 

In order to compare the two formulations, let us consider their correspond­
ing linear relaxations, in which we replace the integrality restrictions Yi E {O, 1} 
by 0 :S νJ :S 1. We then define the following two polyhedra, which are the feasible 
sets of the two relaxations: 

PFL = { (x,y)' I 
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L Xij :S myj, 닝 j, 
i=l 

0 :S Xij :S 1 0 :S 꾀 1}. 
Clearly, 융L C PAFL and the inclusion can be strict (Exercise 1.16). In other 
words, the feasible set of the linear relaxation of formulation (1.1) is closer to the 
set ‘ of integer solutions than the linear relaxation of formulation (1.2) (see Figure 
1.3). 
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Let ZrP be the optimal cost of the integer optimization problem, and let ZFL 

and ZAFL be the optimal costs of the two linear relaxations we have introduced. 
Since PFL C PAFL, it follows that ZAFL :S ZFL. Moreover, ZFL :S ZrP, since 
an optimal solution to the integer optimization problem belongs to PFL. To 

summanze’ 
ZAFL :S ZFL :S Zrp. 

We next discuss the implications of this ordering. Enumerative methods such 
as branch and bound methods discussed in Section 11.1 for solving integer mini­
mization problems depend on the availability of lower bounds such as ZFL· The 
sharper the bound, i.e., the closer it is to Zrp, the better these methods behave. 

Consider, for example, an objective function such as the one depicted in 
Figure 1.3. For this objective function, the optimal solution over the polyhedron 
PFL corresponds to point A in the figure, and is integer. By the previous inequal­
ities, solution A is indeed the optimal solution to the facility location problem. 
So, in this case, we have solved the integer optimization problem by just solving a 
linear optimization problem. On the other hand, for the same objective function, 
the optimal solution over the polyhedron PAFL is point B, which is fractional. 

Thus, formulation (1.1) is preferable to formulation (1.2), despite the fact 
that (1.2) has a significantly smaller number of constraints. 

What is then an ideal formulation of an integer optimization problem? 
Let F = { x1, ... , Xk} be the set of feasible integer solutions to a particular 
integer optimization problem. We assume that the feasible set is bounded 
and, therefore, F is finite. We consider the convex hull of :F: 
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The set conv(F) is a polyhedron that has integer extreme points. Further­
more, the feasible set P of any linear relaxation satisfies conv(F) c P. If 
we knew conv(F) explicitly, i.e., if we could represent conv(F) in the form 
conv(F) = {x I Dx :S: d}, we could solve the integer optimization problem 

m1n1m1ze c' x 

subject to x E F, 

by finding an extreme point solution to the linear optimization problem 

m1n1m1ze c' x 

subject to x E conv(F). 

Given our ability to solve linear optimization problems efficiently, it 
is then desirable to have a formulation, whose linear relaxation is indeed 
the convex hull conv(F) of the integer feasible solutions (see Figure 1.4). 
Unfortunately, this is often difficult. In light of this, we strive for a com­
promise whereby we attempt to come up with a polyhedron that closely 
approximates conv(F). This leads to the central message of this chapter. 
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Figure 1.4: The convex hull of the integer feasible solutions to 
the facility location problem. 

The quality of a formulation of an integer optimization problem 
with feasible solution set :F, can be judged by the closeness of the feasible 
set of its linear relaxation to the convex hull of :F. In particular, consider 
two formulations A and B of the same integer optimization problem. If we 
denote by PA and PB the feasible sets of the corresponding linear relax­
ations, we consider formulation A to be at least as strong as formulation 
B if 

PA 드 PB. 

Let us illustrate this message in an example. 

Example 1.5 (The pigeonhole principle) 
The pigeonhole principle is a central proof method in combinatorics and states 
that we cannot place n + 1 pigeons into η holes in such a way that no two pigeons 
share the same hole. Let us first write a formulation of this problem. Let Xi; 

be one, if pigeon i occupies hole j, i = 1, .. , η +1 a띠 j = 1, .. , η, and, zer이 
otherwise. We consider the following two formulations of the problem. The first 
lS 

ε ¢η = 1, i = 1,.:.' π + 1, 
J=l 

(1.3) 
¢η + Xkj :::; 1, j = 1, ... , n, i 츄 k, i, k = 1, ... , n 十 1, 

Xη E{0,1}, i=l, ... ,n+l, j=l, ... ,n, 

류. 때d the second is given by 

←~→--

ε Xij = 1, i = 1, , n + 1, 
J=l 

n+l 

εXη :::; 1, j = 1,. ,n, 
(1.4) 

i=l 

XijE{0,1}, i=l, ... ,n+l, j=l, ... ,n. 

Clearly the pigeonhole problem is infeasible. Note, however, that the linear 
relaxation of problem (1.3) is feasible as the solution Zη = 1/n satisfies all the 
constraints, while the linear relaxation of problem (1.4) is infeasible. It turns out 
that enumerative approaches based on solving the linear relaxation of problem 
(1찌 require an almost complete enumeration of 려l the integer solutions, while 
problem (1.4) detects infeasibility immediately by solving the linear relaxation. 

1.3 Modeling with exponentially many 
constraints 

In this section, we demonstrate through examples that strong formulations 
and, in particular, the convex hull of integer feasible solutions, may in­
volve an exponential number of linear inequality constraints. However, this 
does not necessarily prevent the efficient solution of the linear relaxation of 
such problems, as they can often be solved by cutting plane methods (see 
Chapter 5). 

The minimum spanning tree problem 

Let G = (V, E) be an undirected graph with node set V (IVI = η) and 
edge set E (IEI = m). Every edge e E E has an 잃sociated cost Ce. The 
cost of a tree is simply the sum of the costs of the edges in the tree. The 
minimum spanning tree problem asks for a spanning tree (an acyclic, con­
nected subgraph of G) of minimum cost. Tree optimization problems arise 
in the design of transportation, communication, and computer networks, 
since at the very least such networks should be connected. Our goal in this 
example is to illustrate the effectiveness of alternative formulations and to 
learn new principles for deriving strong formulations. 

In order to formulate the problem, we define for each e EE, a variable 
Xe which is equal to one, if edge e is included in the tree, and zero, otherwise. 
。ince a spanning tree should have η - 1 edges, we introduce the constraint 

εXe= η-1. 
eEE 

~oreover, the chosen edges should not contain a cycle. It can be shown 
~~xercise 1.17) that this is guaranteed if for any nonempty set Sc V, the 



number of edges with both endpoints in Sis less than or equal to ISi - 1. 
For any S C V, we define 

E(S) = { {i,j} EE I i,j ES}, 

and we can express this set of constraints as 

ε Xe ::; ISi - 1, 
eEE(S) 

ScV, S 좀 α, v. 

This leads to a formulation of the minimum spanning tree problem: 

minimize ε Ce Xe 

eEE 

subject to ε Xe = n-1, 
eEE 

ε Xe ::; ISi - 1, 
eEE(S) 

Xe E {0, l}. 

ScV,S=f α, v, 

This formulation is called the subtour elimination formulation, since 
it contains constraints that eliminate all subtours (cycles). We denote the 
feasible set of the linear relaxation of this formulation by Psub, where we 
replace the constraint Xe E {O, 1} with 0 ::; Xe ::; 1. Notice that the subtour 
elimination formulation has an exponential number of constraints, namely 
2n -1. 

The subtour elimination formulation uses the definition of a tree as a 
subgraph containing n - 1 edges and no cycles. Using an alternative, but 
equivalent definition, a tree is a connected graph containing η - 1 edges. 
Given a subset S of V, we define the cutset 8(8) (see also Figure 1.5) by 

8(8) = {{i,j} EE Ii Es, j 얄 S}. 

Note that 8( { i}) is the set of edges incident to i. We can then express the 
connectivity requirement in terms of the constraints 

ε Xe 2: 1, ScV,S=f α,V 
eEo(S) 

We call the resulting formulation the cutset formulation, and we denote 
the feasible set of its linear relaxation by Pcut· Both formulations have an 
exponential number of constraints. Are these formulations equally strong? 
We show that the subtour elimination formulation is stronger than the cut­
set formulation. The proof demonstrates how we can compare alternative 
formulations of discrete optimization problems. 

룹¢ 

‘~ 

Figure 않 Let S = {1, 2, 4, 7}. Then, δ(S) = { {2, 3}, {4, 5}, 

{7, 8} }, 없d E(S) = { {1, 2}, {1, 4}, {2, 4}, { 4, 7}, {1, 7} 

Theorem 1.1 The following properties hold. 

(a) We have Psub C Pcut, and there exist examples for which the 
inclusion is strict. 

(b) The polyhedron Pcut can have fractional extreme p이nts. 

Proof. 
(a) For any set S of nodes, we have 

E = E(S) U 8(8) U E(V \ S). 

Therefore, 

ε Xe+ ε Xe+ ε Xe= ε Xe· 
eEE(S) 

For x E Psub, and for S =f 0, V, we have 

and 

Since 

ε Xe ::; ISi - 1, 
eEE(S) 

ε Xe ::; IV \ SI - 1. 
eEE(V\S) 

εXe= n-1, 
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Figure 1.6: An example of a graph, in which a minimum span-
ning tree haR cost 2, while the cost of an optimal solution over Pcut 

is 3/2. (a) The cost coefficients. (b) An optimal solution x* over 
Pcut· 

we obtain that 

ε Xe 2:: 1, 

and therefore x E Pcut. 

Consider the example in Figure 1.6(a). The solution x* shown in 
Figure 1.6(b) belongs to Pcut, but it does not belong to Psub, since the 
edges in E(S) for S = {2, 4, 5} have total weight 5/2, while the constraints 
defining Psub dictate that εeEE(S) Xe ::::; 2. The example shows that the 
inclusion may be strict. 

(b) In order to show that the polyhedron Pcut may have fractional extreme 
points, we use the objective function shown in Figure 1.6(a), under which 
the unique optimal solution over Pcut is x* shown in Figure 1.6(b). This 
establishes that this unique fractional solution with a cost of 3/2 is an 
extreme point of Pcut. 口

In Theorem 1.1, we have shown that the cutset formulation is weaker 
than the subtour elimination formulation. In addition, in Section 3.2 we 
will show that Psub = conv(F), i.e., the polyhedron Psub is a representation 
of the convex hull of the set F of vectors corresponding to spanning trees. 

According to the principle regarding strong formulations, the subtour 
elimination formulation is a strong one. This seems somewhat counterin­
tuitive, as the formulation involves an exponential number of constraints. 
Does this prevent us from optimizing over the feasible set Psub of the linear 
relaxation efficiently? In Section 5.4, we will see that we can optimize over 
Psub efficiently both theoretically and practically. 

탐.,...~he traveling salesman problem 

,., ;,,ρn an undirected graph G = (V, E) and costs Ce for every edge e E E, the 
~~j;떼e is to find a tour (a cycle that visits all nodes) of m 
~n Jorder to model the problem, we define for every edge e E E a variable 
~ Pnnal to one, if edge e is included in the tour, and zero, otherwise. Since 
;:ch..,.~ode must participate in two edges of the tour, we have 

ε Xe= 2, i EV. 
eEδ({·}) 

Also, if S is a nonempty proper subset of V, there must be at least two 

edges joining S to V \ S, and we have 

ε Xe 즈 2, ScV, S 동 0,V. 

eE8(S) 

A cutset formulation of the traveling salesman problem is as follows: 

mini 
eεE 

subject to ε Xe = 2, i EV, 
(1.5) 

ε Xe 2:: 2, ScV, S 츄 0,V, 

eEδ(S) 

Xe ε {O, l}. 

Using ideas similar to the subtour elimination formulation of the minimum 
spanning tree problem, we can also formulate the traveling salesman prob­
lem in terms of the following constraints: 

ε Xe = 2, i EV, 

ε Xe :=::; ISi - 1, ScV, S 츄 0,V, 

eEE(S) 

Xe E {0, l}. 

Let Ptspcut and Ptsosub be the polyhedra corresponding to the linear relax­
ations of these two formulations. It turns out that the two formulations are 
equally strong, i.e., Ptspcut = Ptspsub (Exer\ise 1.2이. 

Exercise 1.21 de~ls with a different forrmtlati:on of the variant of the 
traveling salesman problem that involves a directed graph. This formulation 
ha,; a polynomial number of constraints, but it is not as strong as the 
natural extension of the cutset formulation to directed graphs, which has 
an exponential number of constraints. 
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Figure 1. 7: An example of a graph, in which an optimal match­
ing has cost L+ 2, while the cost of the optimal solution over Pctegree 
has cost 3. (a) The cost coefficients. (b) An optimal solution over 
Pctegree• 

The perfect matching problem 

We have an even number η of persons that need to be matched into pairs 
in order to perform a certain job. If person i is matched with person j, 
there is a cost of Cij. A perfect matching is a pairing of persons, so that 
each individual is matched with exactly one other individual. The goal 
is to find a perfect matching that minimizes the total cost. We represent 
the set of people by an undirected graph G = (V, E) where V is the set of 
individuals, and the cost of edge e = { i, j} is Ce. If { i, j} 양 E, this indicates 
that i and j cannot be matched. We let Xe be one, if edge e = { i, j} is 
selected, i.e., persons i and j are matched, and zero, otherwise. Then, the 
perfect matching problem can be formulated as follows: 

minimize ε Ce Xe 

eEE 

SU 

eE<l({i}) 

Xe E {0, l}. 

We denote by f싱egree the polyhedron corresponding to the linear relaxation 
of the above formulation. 

Let :F be the set of all vectors x corresponding to matchings. Figure 
1. 7 shows that Paegree is not eq뻐 to conv(:F). 

The example in Figure 1.7 shows that the above formulation of the 
problem is not particularly strong, as its linear relaxation is not equal to 
the convex hull of vectors corresponding to matchings. A strengthening of 

」‘--」←-

the formulation is to consider the class of inequalities 

ε Xe 2: 1, S C V, S -=f. V, ISi odd. 
eE8(S) 

Notice that all vectors corresponding to matchings satisfy this inequality, as 
in every set with an odd number of nodes, there should be at least one edge 
~;aving tl따 set of nodes. Note th와 the example in Figure 1. 7 (b) violates 
this set of inequalities, since for the set S = {1, 2, 3} we have εeEδ(S) Xe= 

O. We then consider the polyhedron defined by the constraints we have 

introduced: 

싫빠{x I ε Xe= 1, i EV, 
eEδ( { i}) 

ε Xe 즈 1, S C V, S -I- V, ISi odd, 
eEδ(S) 

0::::; Xe::::; 1, e EE}· 

It turns out (see Section 3.4) that Pmatching = conv(:F). 

Cut covering problems 

Our next example encompasses a large collection of integer optimization 
problems including all problems we considered in this section. Its purpose 
쇼 to show the power and flexibility of modeling with an exponential number 
of constraints. For further results see Section 12.2. Let G = (V, E), !VI = n 
be an undirected graph. Let f : 2 v • Z+ be a given set function and 
D C V. Given costs Ce 즈 O for every e E E, we consider the following 
family of discrete optimization problems known as cut covering problems: 

minimize ε Ce Xe 

eEE 

subject to ε Xe= f({i}), i ED 드 v, 
eEδ({i}) (1.6) 

ε Xe 감(S), S 드 K 
eE8(S) 

Xe E {0, l}. 

Note that because of Ce 즈 O, there exists always an optimal solution x to 
problem (1.6) such that 

F = { e E E I Xe = 1} 

is minimal with respect to inclusion, i.e., x - ek is infeasible, for all k E F 
(ek is a vector of zeros except that it has an one in the kth coordinate). 



___ " ~vcouug p:rourems include (see also 
Table 12.1): 
(a) The minimum spanning tree by taking f(S) = 1, for all S i=- α, v 

and D = 0. 
(b) The traveling salesman problem by taking f(S) = 2, for all Si=- φ, v 

and D = V. 
( c) The perfect matching problem by taking f ( S) = 1, for every S i=- α, v 

with ISi odd and D = V. 
(d) The Steiner tree problem is defined as the problem in which a set 

T c V of nodes needs to be connected by a tree possibly using nodes 
in V \ T. Assuming that Ce 즈 0, for all e E E, the choice f(S) equal 
one, if S n T i=- α, T, and f(S) equal zero, otherwise, and D = 0 
models the Steiner tree problem. 

(e) The survivable network design problem is an important problem 
arising in the design of communication, utility, and transportation 
networks. Given costs Ce, for all e E E and requirements Tij for every 
pair of nodes i, j E V, the objective is to select a set of edges from E at 
minimum cost, so that between every pair of nodes i and j there are at 
least r ij paths that do not share any edges. By requiring that there are 
at least Tij edge disjoint paths, the network has enough connectivity, 
so that even if some edges in the network become unavailable, nodes 
i and j could still be connected. The problem belongs to the class of 
cut covering problems (Exercise 1.12) by letting D = 0 and 

f(S) = ·-~m뺏” [ Tij, 8 i=- α,V 
1ξ~, jξ v \~ 

(1.7) 

{f) The vehicle routing problem can be formulated as a cut covering prob­
lem (see Exercise 1.13). 

We next show that we can sometimes strengthen the formulation of 
a discrete optimization problem defined on an undirected graph by formu­
lating the problem in a corresponding directed graph. 

Directed versus undirected formulations 

The Steiner tree problem on an undirected graph G = (V, E) with non­
negative edge weights Ce 즈 0, for all e E E and with a set T of terminal 
nodes can be formulated as a cut covering problem (1.6) with f(S) = 1, if 
SnT 츄 α, T and D = 0. Specifically, the formulation is 

minimize ε CeXe 

eEE 

subject to ε Xe 즈 1, γ Sc V, SnT i=- 0,T, (1.8) 
eE<l(S) 

Xe E {0, 1}. 

￦ Wecanenh때않 this formu밟ion by consideri맹 a collection of subsets 

Vi,· .. ' 샤 of V satisfying: 

(a) 까 n Ti=- α, i = 1, ... ,p. ' 

(b) Vin 까 = φ, i,j=l, ... ,p,i-:fj. 

(c) uf=1 Vi = V. 
Let 8(Vi, ... , Vp) be the set of edges, whose endpoints lie in different 

sets lfi. We consider the following formulation of the Steiner tree problem. 

~‘-

mmmuze εCe Xe 

eEE 

subject to ε Xe 츠 p-1, 
eE8(V1, ... ,Vv) 

Xe E {0, l}. 

(까,---,%) 

satisfying (a)-(c), 

(1.9) 

Given the undirected graph G = (V, E), we create a directed graph 
(V, A) by directing each edge {i,j} EE, thus creating two arcs (i,j), (j」) E 
A with cost Ci! = Cji ~ 0. In the directed Steiner tree problem, the goal 
is to find a rni'nirnurn cost directed subtree that contains a directed path 
between some given root vertex 1 (1 E T), and every other terminal in 
T. Of course, a directed subtree solution can be transformed back to an 
undirected solution. The directed formulation of the Steiner tree problem 

is as follows: 

minimize ε 다j싸 
(i,j)EA 

subject to ε Yii ~ 1, S C V, 1 E S, T \ S i=- 0, 
(i,j)Eo+(S) 

νη + νji :$ 1, e = {i,j} EE, 

νij E {0, 1}, 

where J+(S) represents the set of arcs (i,j) with i ES, and j 룸 s. 
Note that if y is feasible for problem (1.1이, then by setting 

Xe= ν헤 +νji, for all e = {i,j} EE, 

(1.10) 

we obtain a feasible solution for problems (1.8) and (1.9), respectively. 
Although all three formulations (1.8), (1.9) and (1.10) are equivalent as 
integer optimization problems, this is not the case for their linear relax­
ations. Let Zsteiner(T), Zpartition(T), and ZDsteiner(T) be the value of the 
linear relaxations of formulations (1.8), (1.9) and (1.10), respectively. 

We next show that 

Zsteiner(T) :$ Zpartiti。n(T) :$ ZDsteiner(T), 



that is, the directed formulation is at least as strong than both the undi­
rected formulation and the formulation based on Steiner partitions. 

~ince formulation (1.8) is a special case of formulation (1.9) corre­
spondmg to p = 2, Zsteiner(T) ::; Zµartiti。n(T). Without loss of generality 

e that the root vertex 1 E 까 , and consider the inequalities 

ε νij 므 1, 
(i,j)Eδ+ (V\ Vk) 

k = 2, ... ,p. 

Adding these inequalities together with the inequalities Yji ~ O for j E Vi, 
k = 2, ... ,p and i E Vi, (i,j) EE, we obtain 

ε (νη +νJi) 으 p 1. 
eEδ(Vi, .. , Vp) 

Setting Xe = Yψ + ν'ji where e = { i, j}, we obtain that the solution 
x is feasible for the linear relaxation of formulation (1.9), proving that 
Zpartition(T) ::; ZDsteiner(T). 

There are examples such that Zsteiner(T) < ZDsteiner(T), that 굉, the 
directed formulation is strictly stronger in terms of the bound it prod~ces. 
It does, however, have twice as many variables. 

It is not true, however, that directed formulations are always stronger. 
C~nsider for example the following directed formulation of the traveling 
salesman problem. 

minimize ε 다폐 
i,JEV 

subject to ε νη = 1, 
{i/(i,j)EA} 

ε νij = 1, 
{j/(i,j)EA} 

ε νij ~ 1, 
{(i,j)EA/iES, jftS} 

νη E {O, I}, 

j EV, 

i E V, (1.11) 

s c v, s -I= 0, v, 

i, j E V. 

Starting with an undirected problem, we direct the problem, introducing 
two arcs (i,j) and (j,i) for every edge e = {i,j}, such that Ci?= c1i· We 
denote by ZDTsP, ZTsP the values of the linear relaxation of the di;ected 
for~ulation (1.11) and the undirected formulation (1.5). We have (Exercise 
1.22) that ZDTSP = ZTsP, that is, there is no benefit to passing to the 
dire,eted formulation. 

Modeling with exponentially many var1-
ables 

In this section, we outline the column generation method of formulating 
discrete optimization problems as integer optimization problems involving 
an exponential number of variables. The general principle of formulating 
nroblems with an exponential number of variables is to enumerate all par­
~i~ly feasible solutions, and represent any additional constraints in a set 
packing, set covering or set partitioning type of formulation. The key idea 
is that we do not need to include all the variables a priori, but rather to 
e:enerate new variables on demand. This method allows great flexibility in 
~odeling very complicated restrictions and interdependencies that would 
otherwise be very difficult to model. For this reason, this methodology, 
which is called column generation, has had an important impact in prac­
tice. In Chapter 5, we discuss how such models can be solved. We illustrate 
the method with several examples. 

Example 1.6 The cutting stock problem 
Consider a paper company that has a supply of large rolls of paper, of width 
w. (We assume that Wis a positive integer.) However, customer demand is for 
smaller widths of paper; in particular b; rolls of width w;, i = 1, 2, ... , m, need to 
be produced. We assume that w; :::; W for each i, and that each w; is an integer. 
Smaller rolls are obtained by slicing a large roll in a certain way, called a pattern. 
For example, a large roll of width 70 can be cut into three rolls of width w1 = 17 
and one roll of width w2 = 15, with a waste of 4. 

In general, a pattern, say the jth pattern, can be represented by a column 
vector Aj, whose ith entry Qη indicates how many rolls of width U서 are produced 
by that pattern. For example, the pattern described earlier is represented by 
the vector (3, 1, 0, ... , 0). For a vector ( aij, ... , arnj) to be a representation of a 
feasible pattern, its components must be nonnegative integers and satisfy 

εa;J ψi:::; w. 
i=l 

Let η be the number of all feasible patterns and consider the m × η matrix A 
with columns Aj, j = 1, ... , n. Note that n scales exponentially with m. 

The goal of the company is to minimize the number of large rolls used while 
satisfying customer demand. Let 원 be the number of large rolls cut according 
to pattern j. Then, the problem under consideration is 

n 

ε
 

·
얹
 

·m m 

J=l 

n 

subject to εQηXj = b;, i = 1, , m, 
j=l 

Xj E Z+, j = 1, ... , n. 

Note that the above formulation has an exponential (in m) number of 
variables. 

L 



Example 1. 7 Combinatorial auctions 
With the explosion of the internet, auctions have increased in popularity in re-

앓판蠻E;;짧뚫웰뚫현·~월S짧;혔$혔찮폈~옳혔월짧짧혔짧§뚫t; 
R럽~!r렌띔o:re잎 펴~1:1웅짧£많뚫 1덮t:앓s; 잎옆 J앓캄~s~。b싫$$갚짧옆 
SnT = 0, then bj(S)+bi(T) :S bj(SUT), i.e., bidder j is willing to pay more for 
SU T _than for sets S and T individually. For example, a collector of rare stamps 
is will띤g to pay more for a complete collection than two incomplete collections. 
For this reason, it is natural to allow bidders to bid on combinations of different 
items. Such auctions are called combinatorial auctions. The key question in 

網網):總뿔擬歸蠻쩔쩔蠻歸~~;앓網 
繼b뚫도'~~b~:;앓’~~찮&짧않짧h~i!i앓魔i~ !s짧l:!:~~r~ 
be formulated as follows: 

max1m1ze ε b(S)xs 
SCM 

subject to ε xs :S 1, i EM, 
S:iES 

xs E {O, 1}, S [ M.

The constraints in the above formulation ensure that no object in Mis assigned 
to more than one bidder, while the objective function maximizes the total revenue 
from the auction. Note that the problem is a set packing problem involving 2iMI 
variables. 

Example 1.8 The vehicle routing problem 
An undirected graph G = (V, E) represents a transportation network. Node 
i E V, for i i= 1, represents customers with demand of d; units. An additional 
~ode 0 represents the central depot. The t때el costs 않e Ce for every arc e E E. 
A :~~mpany has m vehicl명 with capacities qk, k = 1, ... , m that need to visit all 
customers in order to satisfy demand. Each vehicle is to follow a route that starts 
at a central depot (node 0), visits some customers, and returns to the depot. We 

풍혈뚫 魔~~e앓않:~~~댐~~!e양풍·~:앓~:~1뿔l양le~훨~~~~~검t t풍L앞t펴짧§ 
problem is the problem of constructing routes for the vehicles starting 없id ending 
at the depot that minimize the total transportation cost. 5 

Vehicle ~o~ting problems encountered in practice often involve additional 
~equirements: (a) Each C빠omer can only be visited within certain time windows· 
(b) In addition to delivery of items, the problem may also involve collection of 
items from the customer; (c) There may be multiple depots, multiple type of 
items, and loading and unloading times. 

In order to model such _problems, we start by enumerating feasible partial 
tours that satisfy all the restrictions. Note that because we use enumeration, we 
~.an 띠odel very complicated restrictions. Let Xj, j = 1, ... , N be one, if pa:야ial 
tour J is used, and zero, otherwise. Clearly N is exponential in /V/. Let a;j be 

one, if node i is visited in partial solution j. Let Cj be the cost of partial tour 
,; Since every node needs to be visited exactly once, the vehicle routing problem 
~~n be formulated 잃 a set partitioning problem 잃 follows: 

1.5 Summary 

mm1m1ze c'x 

subject to Ax = e, 

x E {0, l}N. 

The main message of this chapter is that strong formulations are central to 
being able to solve integer optimization problems efficiently. The quality of 
a formulation is judged by the closeness of its linear relaxation to the convex 
hull of integer feasible solutions. However, strong formulations occasionally 
require an exponential number of constraints. Finally, formulations give 
another view of the complexity of a discrete optimization problem, in the 
sense that for problems that are efficiently solvable, the strongest possible 
formulations (convex hull of integer feasible solutions) are often known. 

For example, the description of the convex hull of the set of all match­
ings and all spanning trees is explicitly known. In contrast, the convex hull 
of the set of integer feasible solutions to the traveling salesman problem is 
not known. It is known that both the minimum spanning tree and matching 
problems are efficiently solvable. However, there is no known polynomial 
time algorithm for the traveling salesman problem. This suggests that our 
ability to find the strongest possible formulations of a discrete optimization 
problem (the convex hull of all integer feasible solutions) is directly related 
to our ability to solve it efficiently. In a sense, the com~lexity of a problem 
is characterized by our ability to construct a formulation, with a polyno­
mial number of variables, whose linear relaxation is the convex hull of all 
integer feasible solutions. 

1. 6 Exercises 

Exercise 1.1 (Di돼unctive constraints) Suppose that we are given m con­
straints a;x 으 bi, i = 1, ... , m, but without the restriction ai 2: 0. Model the 
requirement that at least k of them are satisfied. Assume that there exists a 
number 'Y such that a;x 즈 'Y for i = 1, ... , m, and for all feasible x. 

Exercise 1.2 (Selection of the dream team) The coach of the national 
basketball team ls faced with the decision of selecting 12 players for the upcom­
ing international tournament. He has limited his final selection to 20 players, 
?1, · · · , P20. For each player, the coach has collected several statistics that can 
oe summarized as follows. His rebounding average ri, his assists average ai, his 
height hi, his scoring average Si, and his overall defense ability di. The play­
ers have been divided into four broad categori않 play makers (PM) (pi, ... ,ps), 



shooting guards (SG) (p4, ... ,pn), forwards (F) (pg, ... ,p15), and centers (C) 
(p15, ... ,p20). Notice that there are players that can be used in multiple roles 
(for example player p4 can be used both as a play maker and a shooting guard) ‘ 

Players p4,ps,p15,p20 play in the NCAA (college level), while all of the rest play 
in the NBA (professional level). For balance purposes, the team should consist 
of at least 3 play makers, 4 shooting guards, 4 forwards, and 3 centers, which 
implies that some players with dual roles should be selected. In addition, at least 
2 players from the NCAA should be selected, while the mean rebounding, assists, 
scoring average, height, and defense ability should be at least r, a, s, h, d, respec­
tively. The problem is further complicated by the fact that there are compatibility 
problems among some of the players. Player p5 has declared that if player p9 is 
selected, then he does not want to be in the team. Also, players p2 and p19 can 
only be selected together as they play in the same team for years and feel that 
they are much more effective together. Finally, at most 3 players from the same 
team should be selected, so that the coach is not accused of favoritism (players 
p1,p1,p12,p15 play for the same team). Faced with these difficulties, the coach 
has decided that he would like to maximize the scoring average, while satisfying 
the various constraints. Formulate the problem that the coach is facing as an 
integer optimization problem. 

Exercise 1.3 (Playing times for the players in the dream team) This is 
a continuation of Exercise 1.2. After some careful thought, the coach would also 
like to decide how much play time to give to each player as some of these players 
in the initial list of 20, although extremely talented, were returning from long 
injuries and some were aging. For various reasons (injury, age) each player has 
an upper bound Ui on the average number of minutes he can play. In international 
tournaments, the duration of a game is 40 minutes. The coach has decided that 
there were two team compositions that he will use in the tournament depending on 
the type of opponent and circumstances in a game: (PM, SG, SG, F, C) or (PM, 
SG, F, F, C). Looking at the schedule, he predicts that these two schemes will be 
used equally in the tournament. Therefore, he realizes that the average play time 
of play makers would be 40 minutes, shooting guards 60 minutes, forwards 60 
minutes, and centers 40 minutes. Formulate the combined problem of selection 
and allocation of average play time in order to maximize the scoring average. 

Exercise 1.4 An airline operates a fleet of 15 jet aircraft, all equipped with 
the JET32 engine. The airline performs its own engine related repairs and main­
tenance at its repair facility. The maintenance director is reviewing the spare 
parts ordering and stocking policy for the next three years. The JET32 engine 
consists of 4 main modules, A, B, C, and D. When planes come in for repairs, 
sometimes the entire engine must be replaced because of extensive damage and 
wear. More often, however, only certain modules need replacement. The follow­
ing table contains the forecasted requirements for individual engine modules and 
complete engines for the next 3 years. The airline places orders for complete en­
gines and modules at the beginning of the year with JET Inc., the manufacturer 
of the JET32 engine. The following table shows the projected prices for engines 
and modules that JET Inc. might charge in the next three years. 

Note that complete engines cost less than the total cost of buying one 
module of each type. Assume that the cost of “cannibalizing,” i.e., breaking a 
complete engine into four individual modules, is negligible compared to the cost 

퓨퉁 Year Module Module Module Module Complete 

A B c D Engine 

1 5 4 4 2 1 

2 2 1 1 7 0 

3 3 4 3 0 2 

Table 1.1: Forecasted engine/module requirements. 

Year Module Module Module Module Complete 

A B c D Engine 

1 0.5 2.0 5.0 1.0 7.8 

2 0.6 2.2 5.5 1.1 7.5 

3 0.7 2.5 6.0 1.3 7.0 

Table 1.2: Forecasted engine/module prices. 

of these modules. The mix of engines and modules that the airline orders from 
JET Inc. must, therefore, account for the economies in ordering complete engmes. 
Assuming that the airline does not have any inventory of modules or engines in 
hand ‘ formulate an integer optimization problem to determine the order quantities 
for the next 3 years, while minimizing the total cost of purchases. Assume that 

there are no inventory carrying costs. 

Exercise 1.5 (Plan for a move) Suppose you 않e planning to move to your 
new house. You have η items of size aj, j = 1, .. , n, that need to be moved. You 
have rented a truck that has size Q and you have bought m boxes. Box i has size 
bi, i = 1, ... , m. Formulate an integer optimization problem in order to decide 
whether the move is possible. Note that you can put multiple items in the same 
box and size is the only criterion determining if an item can be put into a box. 

Exercise 1.6 (Separable piecewise nonlinear optimization) Consider the 
separable nonlinear optimization problem 

λ
μ
 

$ 
q 

υ
 

F m 
n 

ε
 

M m 

;=l 

subject to ε fi,j(원) ::::; bi, i = 1, , m, 
J=l 

0 으 Xj::::; Uj, J = 1, .. ,n, 

where the functions fi,j(Xj), i = 0,1, ... ,m, j = l, ... ,n are continuous, piece­
wise linear with at most µ pieces. Propose an integer optimization formulation 
to the separable nonlinear optimization problem. 

Exercise 1. 7 (Data mining) 

(a) We are given points (Xi, ai), i = 1, ... , m, where Xi Ear and ai E {O, 1}, 
which indicates the category that point Xi belongs to. We would like to 



decide whether it is possible to separate the points Xi by a hyperplane 
c' x = 1 such that all points of category 0 satisfy c' x :::; 1 and all points of 
category 1 satisfy c' x > 1. Propose a linear optimization problem to find 
the vector c. 

(b) We are given points (xi, ν.), i = 1, ... ,m, where Xi E lRn and 웰 E lR. We 
would like to find a hyperplane c’;c = 1 and a partition of the sets of points 
into two sets with the following properties: 

(i) for all poi따s (xi, Yi) such that c냥. :S 1 we W없it to detect a vector 
β1 so 잃 to minimize 

ε lν.-β;Xii· 

(ii) for 려l poi따s (xi, yi) such that c냥. > 1 we W없it to detect a vector 
β2> so 잃 to minimize 

ε |ν.-따Xii· 
{i: c'xi>l} 

Propose an integer optimization problem to detect the vectors c, βl> 
β2· 

Exercise 1.8 (Constructing piecewise quadratic approximations) Given 
n points with coordinates (x;, y;), i = 1, 2, ... , η, such that X1 < X2 < ... < Xn, 
we would like to construct a piecewise quadratic approximating function f(x) to 
the points y;, i = 1, 2, ... , n consisting of η - 1 pieces. The function f(x) is as 
follows: 

( ai x2 + b1 x + c1, X1 으 X < X2, 

I a2 x2 + b2 x 十 C2, X2 :S X < X3, 

f(x) = <

I an-1 x2 十 bπ 1x+ 다닝, Xn-1 :S X :S ¢π· 

Our objective is to select the coefficients (a;, b;, 다), i = 1, 2, ... , n -1 so that the 
function f(x) is continuous and convex. Recall that a function J(x) is convex if 
its derivative J' ( x) is nondecreasing. 

(a) Suppose we are interested in minimizing the error 

ε |νi - f(x;)J. 
i=l 

Propose a linear optimization model to accomplish this. 

(b) Instead of constructing an approximating function f ( x) consisting of n - 1 
pieces, we can construct a piecewise quadratic approximating function g(x) 
consisting of k - 1 pieces, k < n. The function g(x) is a follows: 

( ai x2 + b1 x + c1, z1 :S x < z2, 

I a2 x2 + b2 x + c2, z2 :S x < z3, 

g(x) = < 

I ak-1 x2 + bk-1 x + Ck-1, Zk-1 :S x :S Zk, 
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Exercise 1.9 (Linear regression and extensions) In the linear regression 
누odel, we 잃sume th와 there 없e d factors X1, ... , Xd that affect the outpu~ 
variable Y in a linear way, i.e., there are coefficients f3o and β = (β1, ... ,βd)’ 

such that 
y = f3,。 +β'X+E,

where E is a normally distributed random variable with mean zero and standa띠 
deviation u. We are given data (Yi, X;), i = 1, . . , n, where ν. E ~ and x; E ~a. 
The values y;, x;, i = 1, ... , n are realizations of the output Y and the factors X. 
We propose several ways to find the coefficients f3o and β = (β1, ... ,βd)'. 

(a) The classical least squares problem is: 

minimize ε(νi - 배 - β'x;)2 

Find explicit expressions of the optimal solutions for 짜 and β*, 

(b) Consider the problem 
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and propose 없l efficient way to solve it. 

(c) In this part we consider the factor selection problem, in which we stipulate 
that only k < d factors X1, ... , Xd affect Y. Extend your formulation 
in part (b) to model the additional constraint that up to k out of the d 
coefficients β1 , ... , f3d have nonzero values. 

(d) Given n = 2k + 1 numbers a;, i = 1, ... , n median (a1, ... , an) is that 
number a 없nong a;, i = 1, ... , η with the property that k of the a; ’s are 
larger than or equal to a, and k of the a; ’s are smaller than or equal to a. For 
example, median (3, 5, -2, 1, 7) = 3. Compared to the mean, the median 
is much less sensitive to outliers, and thus more “robust” . Formulate the 
robust linear regression problem for n = 2k + 1: 

minimize median (|ν1 - a。 -β'x1I, ... , |νn - a。 - β1Xnl) 

as 없l integer optimization problem. 

1:xercise 1.10 (A production and distribution problem) A company pro­
auces a set of K products at I plants. It then ships these products to J market 
zones. For k = 1, ... , K, i = 1, ... , I, and j = 1, ... , J, the following data are 
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given: 

V;k = variable cost of producing one unit of product k at pl없it i, 

Cijk = cost of shipping one unit of product k from plant i to zone j, 

f;k = fixed cost associated with producing product k at plant i, 

M;k = maximal quantity of product k produced at plant i, 

m;k = minimal quantity of product k that C없1 be produced at pl없it i, 

if pl없it i produces a nonzero quantity, 

q;k = capacity of plant i used to produce one unit of product k, 

Q; = capacity of plant i, 

djk = demand for product k at market. zone j. 

(a) Formulate the problem of minimizing the total cost of production and trans­
portation that the company is facing, as an integer optimization prob­
lem. Indicate how your model can incorporate the following additional 
constraints. 

(b) No plant may produce more than K1 products. 

(c) Every product can be produced in at most Ii plants. 

(d) For a particular product ko, plant 3 must produce it if neither plant 1 nor 
plant 2 produce it. 

(e) Each market zone must be sourced by exactly one plant for all products. 

Exercise 1.11 (A dynamic single item lot sizing problem) We consider 
the production of a single product over T periods. If we decide to produce at 
period t, a setup cost Ct is incurred. For t = 1, ... , T, let dt be the demand 
for this product in period t, and let Pt, ht be the unit production cost and unit 
storage cost (per period), respectively. 

(a) Formulate an integer optimization problem in order to minimize the total 
cost of production, storage, 없id setup. 

(b) Suppose we allow demand to be lost in every period except for period T, 
at a cost of bt per unit of lost demand. Show how to modify the model to 
handle this constraint. 

( c) Suppose that production can occur in at most five periods, but no two such 
periods can be consecutive. Show how to modify the model to handle this 
option. 

Exercise 1.12 (The survivable network design problem) Show that Eqs. 
(1.7) correctly model the survivable network design problem. . 

Exercise 1.13 (The vehicle routing problem) An undirected graph G == 
(V, E) represents a transportation network. Node i E V, for i # 1, represents 
띠stomers with demand of b; units. The travel costs are de for every arc e E E. 
A company has m vehicles, each of capacity Q, that need to visit all customers in 
order to satisfy demand. Each vehicle is to follow a route that starts at a central 
depot (node 1), visits some customers, and returns to the depot. Suppose that 
the demand of each customer can be carried by a single vehicle, i.e., bi ~ Q, 

ι、r all i. Assuming that the demand of 없iy customer cannot be divided into 
;~eral vehicles, formt 
that minimize the total transportation cost. 

Exercise 1.14 (The fixed charge network design problem) We are given 
a directed graph G = (V, A) and a demand or supply bi for each i E V, such that 
" ” b; = O. There are two types of costs: transportation costs Cij of shipping 
;찮~nit from node i to node j, a띠 building costs 봐 of establishing a link ( i, j) 
between nodes i and j of capacity uη· We would like to build such a network in 
order to minimize the total building and transportation costs, so that all demand 
is met. Formulate the problem as an integer optimization problem. 

Exercise 1.15 (Job shop scheduling) A factory consists ofm machines M1, 
... , Mm, and needs to process n jobs every day. Job j needs to be processed 
once by each machine in the order (Mj(l)> ... , Mj(m))· Machine M; takes time 
Pii to process job j. A machine can only process one job at a time, and once a 
job is started on any machine, it must be processed to completion. The objective 
is to minimize the sum of the completion times of all the jobs. Provide an integer 
optimization formulation for this problem. 

Exercise 1.16 (Facility location) For the facility location problem, prove 
that the inclusion FFL C PAFL C없l be strict. 

Exercise 1.17 Let G = (V, E) be an undirected graph with n nodes. Show 
that G is a tree if and only if the total number of edges is n - 1, 없id for any 
nonempty set SC V, the number of edges with both endpoints in Sis less than 
or equal to ISi - 1. 

Exercise 1.18 (A multicut formulation of the MST problem) Given an 
undirected graph G = (V, E), with IVI = n and IEI = m, consider a partition 
of V into di헤oint nonempty sets C0, C1, ... , Ck of nodes, whose union is V. Let 
8(Co, C1, ... , Ck) be the set of edges, whose endpoints lie in different sets Ci. Let 

Pmcut = { x E :nr I 0 :S Xe :S 1, ε Xe= n-1, 
eEE 

ε Xe 2: k, for all k 
eE8(Co,C1,. ‘”Ck) 

and for 삶l P않titions Co C1 Ck of V}. 

Prove that Pmcut = Psub, where 
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0 :S Xe :S 1, ε Xe= n-1, 

eEE 

ε Xe :S ISJ - 1, SC V, S 쏟 0,V}. 
eEE(S) ) 



Exercise 1.19 (A directed cut formulati。n of the MST) Given an ,.」;

뚱빨鋼많y짧짧짧짧g앓,펴n웰찮;운i號ff풍?選옳짧t 
a node r in V as the root. node. Let YiJ = 1 if the tree c~ntains arc ( i, j) when 
root the tree at node r (mother words the solution will be a tree with directed 
edges away from the root). Let o+(S) be the set of arcs going out of s. Let 

Pdcut = { x E JRm/ 0 :S x :Se, Xe = gη 펴 γ eE E 

εYe= n-1, ε νe 2: 1, r E .8, γscv, 띤 0 i. 
eξA eE8+(S) J 

Prove that Pdcut = Psub· 

Exercise 1.20 (The undirected traveling salesman problem) For the 
undirected traveling salesman problem, prove that 

Ptspcut = Ptspsub· 

Exercise 1.21 * (The·directed traveling salesman problem、 Given a di­
cted graph G = (V, A), with /V/ = π and /A/ = m a natural ext~nsion of the 

traveling salesman formulation in Eq. (1.5), involves ’the constraints: 

ε νij = 1, 
{ij(i,j)EA} 

ε YiJ = 1, 
{jj(i,j) εA} 

ε νij 2: 1, 
{(i,j)EAjiES, jV!S} 

νiJ E {O, 1}, 

Let :F be the set of feasible solutions. 

j EV, 

i EV, 

Sc V, S# 0,V, 

i,j EV. 

(a) Consider now the following set of (polynomially many) constraints: 

u; - Uj + ny;j :S n - 1, (i,j) EA, i,j # 1, 

j EV, ε ν'ij = 1, 
{ij(i,j)EA} 

ε Yii = 1, i EV, 
{jj(i,j)EA} 

νii E {0, 1}, i,j EV. 

Let :F' be the set of feasible solutions. Prove that :F = :F'. 

(b) Let Ptsp-dcut and Ptsp-p。lyn。mial be the polyhedra associated with the linear 

짧렇@많'::of th 

f강sp-dcut C Ptsp-p。lyn。mial,
and that the inclusion can be strict, i.e., the first formulation is stronger. 

(c) Prove that Ptsp-dcut # conv(:F). 

Notes and sources 33 

F.xercise 1.22 (Directed versus undirected formulations for the trav­
clf~g salesman problem) Let ZDTsP, ZTsP be the v삶ues of the line앞 relax­
:tions of the directed formulation (1.11) and the undirected formulation (1.5), 
;espectively. Show that Z DTsP = ZTsP. 

F,xercise 1.23 (Computational Exercise: Facility Location) This exer­
미-~~refers to Examples 1.2 and 1.4. We are given 20 possible facility locations that 
r.an serve 200 customers. The fixed costs and the costs of servicing a customer 
fr~m a specific location 않e given in the file FL.dat. The file FL.prj describ않 the 
formulation introduced in Example 1.2, while AFL.prj is the aggregate formula­
tion introduced in Example 1.4. We ::re s이ving the linear relaxations of both 
formulations. 

(a) Solve the facility location problem under the two formulations. Which 
formulation gives a better objective function value? 

(b) Record the number of constraints and the number of variables under both 
formulations. Which formulation has a smaller dimension? 

(c) What can you observe about the optimal decision variables y? 

(d) Rel삶e your answers in parts (a)-(c) to what has been discussed in this 
chapter. Which formulation is better? 

1. 7 Notes and sources 

This chapter uses extensively material from Bertsimas and Tsitsiklis (1997), 
Chapter 10. 

1.1. The derivation of integer optimization models is more an art than 
a formal methodology. The journal Iπterfaces often publishes inter­
esting large scale discrete optimization models. Examples of integer 
optimization modeling techniques can also be found in nearly all 
textbooks about integer optimization. We refer, in particular to the 
books Papadimitriou and Steiglitz (1982), Nemhauser and Wolsey 
(1988), Williams (1978) and Wolsey (1998). 

1.3. Edmonds (1971) has shown that the convex hull of the integer feasi­
ble solutions to the minimum spanning tree problem is given by Psub· 

The survey paper by Magnanti and Wolsey (1995) discusses many dif­
ferent formulations for tree related problems, and their applications 
to discrete optimization. The formulation of the travelling salesman 
problem with exponentially many constraints has been introduced 
by Dantzig et al. (1954, 1959). More information on the traveling 
salesman problem can be found in Lawler et 와. (1985). Edmond 
(1965) provided a polynomial time algorithm for the matching prob­
lem and· showed that the convex hull of the integer feasible solutions 
t? the matching problem is given by Pmatching· For a textbook expo­
sition of matching algorithms we refer to Papadimitriou and Steiglitz 
(1982), Nemhauser and Wolsey (1988), Cook et al. (1998) and Korte 
and Vygen ( 2000). A thorough treatment of the theory of matchings 
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can be found in Lovasz and Plummer (1986). For an analysis and a 
computational investigation of the directed versus the undirected for­
mulation for Steiner tree problems we refer to the papers by Chopra 
면id Rao (1994a,b). Cut covering problems have been considered in 
Goemans and Williamson (1995a). 

1.4. The cutting stock problem was introduced in Gilmore and Gornorv 
(1961). For a survey on combinatorial auctions see de Vries 핵 
Vohra (2003). 
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