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a b s t r a c t

The classical column generation approach often shows a very slow convergence. Many
different acceleration techniques have beenproposed recently to improve the convergence.
Here, we briefly survey these methods and propose a novel algorithm based on the
Chebyshev center of the dual polyhedron. The Chebyshev center can be obtained by
solving a linear program; consequently, the proposed method can be applied with small
modifications on the classical column generation procedure. We also show that the
performance of our algorithm can be enhanced by introducing proximity parameters
which enable the position of the Chebyshev center to be adjusted. Numerical experiments
are conducted on the binpacking, vehicle routing problem with time windows, and
the generalized assignment problem. The computational results of these experiments
demonstrate the effectiveness of our proposed method.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Dantzig–Wolfe decomposition algorithm, first introduced by Dantzig and Wolfe in 1961 [11], is considered to
be one of the most successful methods for tackling large-size mathematical programming problems, especially integer
programming problems [23]. The incorporation of the column generation method into the linear programming-based
branch-and-bound scheme, often referred to as the branch-and-price scheme, is able to solve many real-life hard
optimization problems [2,12,31].

The column generation procedure, which is based on the simplex algorithm, has the major drawback that it often shows
desperately slow convergence. Vanderbeck [33] summarized several limitations of the simplex-based column generation
procedure as follows: (i) slow convergence (the tailing-off effect); (ii) poor columns in the initial stage (the head-in effect);
(iii) the optimal value of the restricted master problem remains the same during many iterations (the plateau effect);
(iv) the dual solution jumps from one extreme point to another (the bang–bang effect); (v) the intermediate Lagrangian
dual bounds do not converge monotonically (the yo-yo effect). In column generation, the main driving force is the dual
solution of the restricted master problem. One of the major sources of troubles is the instability of the dual solutions
that can arise from the dual degeneracy and the extremity of the dual optimal solutions when the simplex algorithm is
used. The lack of good columns in the current restricted master problem also contributes to the instability of this method.
When viewed as a classical convex optimization approach, column generation can be understood as an iterative method of
updating Lagrangianmultipliers (the dual variables) until the optimality condition (the complementary slackness condition)
is satisfied, using the column generation subproblem and the dual solution of the linear programming problem (the master
problem). More specifically, classical column generation essentially involves the same process as applying the Kelley’s
cutting plane algorithm [22] to the dual of the restricted master problem. Note that the dual problem has a restricted
set of inequalities. In Kelley’s method, the maximally violated inequality at the current solution is obtained via the oracle
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(the separation problem) and then added to the problem. The maximally violated inequality corresponds to the column
with the smallest (in a minimizing problem) reduced cost in the primal problem, and the column generation subproblem
functions as the oracle. However, Kelley’s method can be desperately slow [36], so it is not surprising that classical column
generation may also be desperately slow. Many acceleration schemes for column generation have recently been proposed
in the literature [4–6,16,29,30,28,34,35]. The underlying rationale for most of them is stabilization of the dual solutions
by penalizing the distance between the new dual solution and the best dual solution obtained so far; these approaches
are often referred to as the stabilized column generation scheme. Since column generation can be understood as a cutting
plane method in the dual perspective, any acceleration scheme for the cutting planes can be adopted within the framework
of column generation. Stated simply, the stabilized column generation approach can be understood as a special case of
the bundle method that is commonly used in the convex optimization field. Another well-known approach for accelerating
cutting planes is achieved by centering the new dual solution within the dual polyhedron. Among the centering methods
that have been developed, much attention has been paid to the analytic center cutting plane method (ACCPM) [20,26] as
an approach for solving the convex optimization problems. Elzinga and Moore [18] have proposed a cutting plane method
based on the Chebyshev center, which is another well-known center of a convex set. The fact that the Chebyshev center
can be obtained by solving a simple linear program is a major advantage that allows researchers to keep using the linear
programming based branch-and-price scheme. Despite the existence of a theoretical link between the cutting planemethod
and the column generation method, to the best of our knowledge, there has as yet been no attempt to develop a method
using the Chebyshev center within the column generation scheme for solving integer programming problems. In this paper,
we develop and investigate the effectiveness of the Chebyshev center based column generation on several well-known
integer programming problems. Moreover, we propose a novel acceleration scheme for the Chebyshev center algorithm, in
which the distance between the best dual bound cut and the next Chebyshev center is adjusted adaptively during column
generation.

In Section 2, we give a brief overview of the various acceleration methods used for column generation. In Section 3,
the Chebyshev center based column generation scheme is proposed, and numerical results of the proposed algorithm and
comparisonswith othermethods are reported in Section 4. In Section 5,we summarize our data and present our conclusions.

2. Accelerating column generation procedure

Let X be a finite set of vectors x ∈ Rn, Xk
⊆ X and K be an index set of the elements of Xk, i.e., {xi|i ∈ K} = Xk

⊆ X . Here,
X may represent a set of the integer vectors satisfying some linear inequalities or a set of extreme points of a polytope. Let A
denote an m× n real valued matrix and b ∈ Rm, c ∈ Rn denote real valued column vectors. Then, consider an optimization
problem which is given as

min cT x (1)
subject to Ax ≥ b, (2)

x ∈ conv(X), (3)
where conv(X) is the convex hull of X . If only a restricted set Xk

⊆ X is known, we have a restricted version of the above
optimization problem as follows:

min cT x (4)
subject to Ax ≥ b, (5)

x ∈ conv(Xk). (6)
By theDantzig–Wolfe decompositionmethod, the above problemcan be reformulated as follows,whichwe call the restricted
master problem:

min
−
i∈K

cT xiλi (7)

subject to
−
i∈K

Axiλi ≥ b, (8)−
i∈K

λi = 1, (9)

λi ≥ 0, ∀i ∈ K . (10)
And its dual:

max fD(π, π0) = bTπ + π0 (11)

subject to (Axi)Tπ + π0 ≤ cT xi, ∀i ∈ K , (12)
π ≥ 0, (13)

where π ∈ Rm and π0 ∈ R are the dual vectors associated with constraints (8) and (9), respectively.
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(a) Dual space at the kth iteration. (b) Classical column generation (Kelley’s
method).

(c) Stabilized column generation. (d) Column generation based on the
Chebyshev center.

Fig. 1. Π∗ is the true dual optimal solution. Π k is the optimal solution of the current relaxed dual problem.

Note that the dual of the restricted master problem has a restricted set of constraints, making it a relaxed dual problem.
Let Π∗ = (π∗, π∗0 ) be the optimal solution of the unrelaxed dual problem (all inequalities of which are obtained from
the unrestricted set of feasible x ∈ X), and Π k

= (π k, π k
0 ) denote the dual optimal solution of the dual problem with all

inequalities i ∈ K or, equivalently, the primal problem with all columns i ∈ K . Let Π̃ = (π̃, π̃0) be a feasible dual solution
to the unrelaxed dual problem, i.e., the column generation oracle cannot find any negative reduced cost column for the
dual vector Π̃ = (π̃, π̃0). Clearly fD(π̃, π̃0) ≤ fD(π∗, π∗0 ) ≤ fD(π k, π k

0 ) holds. The dual space at iteration k of the column
generation procedure is illustrated in Fig. 1(a). The dual feasible set is relaxed, so the true optimal dual solutionmay be inside
of the feasible set. Observe that during the column generation iterations, the dual solutions are enhanced toward (π∗, π∗0 ).
Therefore, it is crucial that one should choose an adequate next dual vector (π k+1, π k+1

0 ). In the following subsections, we
briefly review several dual updating methods, and propose a new dual updating scheme based on the Chebyshev center.

2.1. Kelley’s cutting plane method

Kelley’s method is equivalent to the dual interpretation of the classical column generation method based on the simplex
algorithm [22], as illustrated in Fig. 1(b). As shown in the figure, the dual solution is likely to move among extreme points
of the dual polyhedron. When there are many constraints whose defining coefficient vectors are nearly parallel to the cost
vector (b, 1), the zigzag movement of the dual solution may be apparent.

2.2. Wentges’ weighted Dantzig–Wolfe decomposition

In 1997, Wentges introduced the weighted Dantzig–Wolfe decomposition method for linear mixed-integer
programming [34]. The subsequent Lagrangian multiplier (dual solution) was obtained by a convex combination of the
current solution and the solution with the best Lagrangian bound obtained to date. The underlying motivation of this
approach was to search a better dual solution in the neighborhood of the best solution. This method can be interpreted as
a direction search procedure that always starts from the solution with the best Lagrangian bound, say Πbest , with direction
Π k–Πbest . Note that Πbest is not feasible for the unrelaxed dual problem, so the procedure is terminated when Πbest is
unrelaxed dual feasible. In his paper, Wentges reported the improved computational results of the weighted Dantzig–Wolfe
decompositionmethodon the capacitated facility location problemespecially in terms of the number of iterations, compared
with the classical column generation method.

2.3. Stabilized column generation

The stabilized column generation approach can be seen as a special case of the bundle method, which is well known
method in the convex optimization field. In the bundlemethod, the dual solution is often constrained to a given interval, and
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(a) Chebyshev center of a polyhedron over
Euclidian norm.

(b) Proximity adjusted Chebyshev center
of a polyhedron over Euclidian norm. The
polyhedron is defined by six inequalities,
and the Chebyshev center is the point that
maximizes r , s.t. a1x+ α‖a1‖r ≤
b1, aix+ ‖ai‖r ≤ bi, i = 2, . . . , 6. Note
that, at the proximity adjusted Chebyshev
center, r1 = r3 = r6 holds. The distance
from the Chebyshev center to inequality
a1 is αr1 . The center point is getting closer
to a1 when α < 1.

Fig. 2. Chebyshev center and the proximity-adjusted Chebyshev center.

any deviation from the interval is penalized by a penalty function. In this method, various penalty functions can be used,
including boxstep [24], polyhedral penalty [16,27,29,35] and quadratic function [5,15]. The boxstep and polyhedral penalty
can be applied via reformulation of the original linear programming problem, while the nonlinear programming model is
necessary for the quadratic penalty function. Although the quadratic convex optimization problem can be solved efficiently
by the interior point method, one may lose many of the advantages of the linear programming, such as the applicability
of very powerful linear programming solvers, when this method is used. The stabilized column generation method can be
understood as a bundle method applied on the dual of the restricted master problem with a polyhedral penalty function.
The penalty function for the stabilized column generation is often defined as a simple V-shaped function whose center is
specified as the stabilizing center, and slope ϵ determines howmuch the distance from the best dual solution is penalized. A
large number of reports have been published in recent years on how to accelerate the column generation procedure, most
of which are concerned with these stabilization techniques (see [5,9,23,16,27,29,35]).

To implement stabilized column generation, the stabilization center and the penalty parameter ϵ must be determined.
Moreover, in order to ensure optimality of the original problem, the stabilization center and the penalty parameter
ϵ should be adjusted carefully throughout the algorithm. It would appear that the performance of the stabilization
method depends largely on how to manage these parameters. In specific contexts, problem specific knowledge may
help improve the performance. For example, the initial stabilization center can be constructed from the relaxed original
formulation. Oukil et al. considered the multiple-depot vehicle scheduling problem (MDVSP) [27]. They solved the single
depot version of MDVSP, which is the relaxation of the MDVSP, and used its dual solution as the stabilization center for
the MDVSP. The experimental results show that this good initial stabilization center can significantly accelerate column
generation. The stabilization technique has been proven to be very effective in accelerating column generation for various
problems [5,16,27]. For a detailed comparison of the bundlemethod and the classical columngeneration approach the reader
is referred to the survey paper by Briant et al. [9]. The behavior of dual solutions during the stabilized column generation is
illustrated in Fig. 1(c).

3. Column generation based on the Chebyshev center

For a bounded, closed, and nonempty convex set, the Chebyshev center is the deepest point inside the set, in the sense
that it is farthest from the exterior [8]. The Chebyshev center of a polyhedron defined by some linear inequalities is shown
in Fig. 2(a). If the convex set is defined by a set of linear inequalities aTi x ≤ bi, ∀i ∈ {1, . . . ,m}, the Chebyshev center can
be found by solving the linear program [8]:

max r (14)

subject to aTi x+ ‖ai‖∗r ≤ bi, ∀i ∈ {1, . . . ,m}, (15)

r ≥ 0, (16)

where ‖a‖∗ is any norm of vector a.
Elzinga and Moore developed the cutting plane algorithm using the Chebyshev center in a rather general sense,

i.e.,without a specific target problem [18]; in the same report, they also described the convergenceproperty of theChebyshev
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center based cutting plane method. Betrò proposed an accelerated cutting plane scheme using the Chebyshev center by
introducing a deeper objective cut, which is obtained by perturbing the dual feasible solution [7]. The Chebyshev center
cutting plane method is a cutting plane method based on the concept of centering. An important variant of the classical
cutting plane method is the ACCPM in which the analytic center is considered to be the point that maximizes the product
of the slacks of given inequalities. The ACCPM and bundle method can be combined to improve convergence [1,15], and
some authors have used the ACCPM in column generation scheme; for example, Elhedhil and Goffin solved the binpacking
problem using the ACCPM [17], and Goffin et al. examined the multicommodity network flow problem [19]. However, to
the best of our knowledge, no study has been devoted to evaluating the Chebyshev center based method with the column
generation procedure.

Here, we adopt the Chebyshev center cutting plane method to the column generation scheme via the dual perspective.
Consider the dual of the restricted master problem: max (11), s.t. (12) and (13). We assume that the dual polyhedron is
bounded and has an interior point (if not, we consider a subset of inequalities of the dual problem which has an interior
point). If a dual bound Z̃ or a dual feasible solution Π̃ (we set Z̃ as bπ̃ + π̃0) is known, a trivial inequality−bπ − π0 ≤ −Z̃
can be added to the dual problem. We reformulate the dual problem of the restricted master problem as follows, which we
call the Chebyshev dual master problem:

max r (17)

subject to (Axi)Tπ + π0 + ‖(Axi, 1)‖∗r ≤ cT xi, ∀i ∈ K , (18)
−πj + r ≤ 0, ∀j = 1, . . . ,m, (19)

−bTπ − π0 + ‖(b, 1)‖∗r ≤ −Z̃, (20)
π ≥ 0, (21)
r ≥ 0. (22)

The above problem is to find the Chebyshev center point defined by the restricted set of inequalities K , and the dual bound.
Let y ∈ Rm and z ∈ R denote the primal variables associatedwith inequalities (19) and (20), respectively. Then, the restricted
master problem can be given as follows, which we call the Chebyshev primal master problem:

min
−
i∈K

cT xiλi − Z̃z (23)

subject to
−
i∈K

Axiλi − y− bT z ≥ 0, (24)−
i∈K

λi − z = 0, (25)

−
i∈K

‖(Axi, 1)‖∗λi +

m−
j=1

yj + ‖(b, 1)‖∗z ≥ 1, (26)

λi ≥ 0, ∀i ∈ K , (27)
yj ≥ 0, ∀j = 1, . . . ,m, (28)

z ≥ 0. (29)

The distance from a hyperplane to the Chebyshev center is defined by the norm. In particular, for the Euclidean norm
(L2 norm), ‖a‖ is

∑
i∈N |ai|2, where a ∈ RN .

Note that the Chebyshev primal master problem has more variables y ∈ Rm, z ∈ R and one more constraint (26) than
the original restricted master problem. The column generation procedure, however, can be performed in almost the same
manner as the original restricted master problem. Suppose that we solved the Chebyshev primal master problem and
obtained the dual optimal solution (π ′, π ′0), where π ′ and π ′0 are optimal dual variables associated with constraints (24)
and (25), respectively. To find an entering column, we solve the pricing subproblem: min (cT − π ′TA)x − π ′0, s.t. x ∈ X .
Let z ′ and x′ be the optimal value and an optimal solution to the pricing subproblem. If z ′ < 0, (π ′, π ′0) is violated by the
constraint (18) identified with x′, hence the new column (Ax′, 1, ‖(Ax′, 1)‖) can be added to the Chebyshev primal master
problem. Note that ‖(Ax′, 1)‖∗ can be calculated easily once Ax′ is identified. If z ′ ≥ 0, (π ′, π ′0) is a feasible solution to the
unrelaxed dual problem and consequently, the best dual bound Z̃ can be updated to (b, 1)T (π ′, π ′0) = bTπ ′ + π ′0. Note that
we do not need to consider the dual variable r for constraint (26) for pricing because z ′ − ‖(Axi, 1)‖∗r ≤ z ′, and we do not
skip any violated cut (or beneficial column). Therefore, the column generation subproblem is the same as the subproblem
for the original restrictedmaster problem. This procedure is repeated until the optimal value of the above problem becomes
zero. An optimal value of zero for the above problem implies that the radius of the Chebyshev sphere is also zero from the
strong duality of the primal and the dual linear programs. In the practical implementation, some positive value ε can be used
instead of zero in the terminating condition. It is noteworthy that the use of a fixed value of ε may not be a good strategy
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because in the Chebyshevmaster problem, the value of the original primal objective function
∑

i∈K cT xiλi may be very small
when z ≪ 1 by (25), which leads to an unexpected early termination of the algorithm. One remedy is to use εz ′ as the
termination criterion;

∑
i∈K cT xiλi − Z̃z < εz ⇒

∑
i∈K cT xiλ̃i − Z̃ < ε, where λ̃ := λ/z and

∑
i∈K λ̃i = 1 by (25). The

detailed algorithm of the column generation based on the Chebyshev center is presented in Algorithm 1.

Algorithm 1 Column generation based on the Chebyshev center
1: procedure ChebyshevCenterColGen
2: Z̃ ← 0 ◃ Or any valid dual bound
3: repeat
4: Solve the restricted Chebyshev primal master problem
5: (λ′, y′, z ′) and (π ′, π ′0)← the optimal primal and dual solutions
6: if the optimal value

∑
i∈K cT xiλ′i − Z̃z ′ is greater than εz ′ then ◃ Equivalently r > εz ′

7: Solve the column generation subproblem using (π ′, π ′0) as dual solution
8: if new column is identified with x′ then ◃ Reduced cost is negative
9: Add new column (Ax′, 1, ‖(Ax′, 1)‖) to the problem

10: else
11: Z̃ ← bTπ ′ + π ′0 ◃ Update the best dual bound
12: end if
13: end if
14: until r ≤ εz ′
15: end procedure

In the classical column generation approach, themaster problem is solved to obtain the next dual solutionwhich lies on a
vertex point of the dual polyhedron. In the Chebyshev center based column generation, the next dual solution corresponds
to the Chebyshev center of the polyhedron which is the intersection of the current relaxed dual polyhedron and the half
space constrained by the best dual bound identified so far. In Fig. 1(d), Π̃ is the best known dual solution which is feasible
for the unrestricted dual problem, and Π k is the Chebyshev center point at iteration k. After the inequality k + 1 is added,
the new Chebyshev center pointΠ k+1 is obtained. Note that the radius of the Chebyshev ball decreases or remains the same
with the addition of inequalities.

3.1. Proximity adjusted Chebyshev center

When the Chebyshev dual master problem is being considered, the polyhedron of the problem is characterized by three
types of inequalities: (i) inequalities of the generated columns (Ax1, 1, ‖(Ax1, 1)‖), . . . , (Axk, 1, ‖(Axk, 1)‖), referred to as
column inequalities; (ii) the best dual bound, referred to as best dual bound inequality; (iii) inequalities for nonnegativity.
Some of these inequalities may be more important than others. A large number of column inequalities and one best dual
inequality together define the dual polyhedron at some iteration. In general, the column inequalities attempt to push the
next Chebyshev center down (closer to the best dual inequality), while the best dual inequality tries to lift it up (closer to
the column inequalities), as shown in Fig. 1(d). The relative position of the next Chebyshev center from an inequality can
be adjusted by multiplying some value to the norm of a vector that defines the coefficient of r in the linear program for the
Chebyshev center problem. We denote this as the proximity adjusted Chebyshev center, which is illustrated in Fig. 2(b).

We now apply the proximity parameter α to the best dual bound inequality (20). This can be done by multiplying some
α > 0 to the coefficient of r in (20). The proximity adjusted Chebyshev primalmaster problem can then be stated as follows:

min (23)
subject to (24), (25)−

i∈K

‖(Axi, 1)‖∗λi +

m−
j=1

yj + α‖(b, 1)‖∗z ≥ 1,

(27), (28), (29).

(30)

The value of α determines how far the next Chebyshev center point is located from the dual bound inequality. It is
also possible that one modifies the value of α dynamically during the column generation procedure. As the number of
columns is finite in a typical column generation subproblem for a combinatorial optimization problem, the number of
column inequalities is also finite. Consequently, from now on, we assume that the number of columns is finite and that
proximity parameter αk > 0 for any iteration k. We also assume that the dual polyhedron of the unrelaxed dual master
problem is bounded and closed.

Theorem 3.1. The optimal value of the proximity adjusted Chebyshev dual master problem, which is equivalent to the primal
master problem, converges to zero — unless the sequence of positive numbers {αk} converges to zero.
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Proof. Considering the dual polyhedron, it is easily seen that the sequence of radii of Chebyshev spheres {rk}, is bounded
andmonotonically nonincreasing. Let S be the set of feasible solutions to the unrelaxed dual master problem. For Chebyshev
center Π k at iteration k, if Π k

∉ S then the column generation subproblem eventually finds a cut which separates Π k. Since
there are finitely many columns, there exists n0 such that Π l

∈ S for any l > n0. Suppose that limk→∞ rk = r̂ > 0. For
any l > n0, (b, 1)TΠ l+1

≥ (b, 1)TΠ l
+ αl+1‖(b, 1)‖rl+1 holds, because of (20). By the Cauchy–Schwarz inequality, we have

‖(b, 1)T‖‖Π l+1
− Π l
‖ ≥ (b, 1)T (Π l+1

− Π l) ≥ αl+1‖(b, 1)‖rl+1, which implies 0 < r̂ ≤ rl+1 ≤ ‖Π l+1
− Π l
‖/αl+1. If

sequence {αk} converges to α̂ such that α̂ > 0, liml→∞ ‖Π
l+1
− Π l
‖ ≥ r̂α̂ > 0, which derives a contradiction, since S is

bounded and closed. If {αk} diverges but is bounded (e.g., oscillation between numbers), we have ‖Π l+1
−Π l
‖ ≥ α̃r̂ > 0 for

any l, where α̃ = inf∀l{αl} > 0, which again derives a contradiction, since S is bounded and closed. If {αk} diverges towards
infinity, clearly, {rk} should converge to zero, which contradicts the assumption. The sequence {rk}, therefore, converges to
zero. �

Since the proximity parameter α controls the proximity between the next position of Chebyshev center and the best
dual inequality in the dual space, the column generation procedure may be accelerated if the value of α is properly chosen.
Intuitively, the value ofα should be smallwhenwewant to update the dual bound quickly. On the other hand, a large value of
α may producemore relevant new columns, since the next Chebyshev center is becoming closer to the true optimal solution
(extreme point) of the relaxed dual polyhedron. Based on these observations, we propose a heuristic algorithm to update
the value ofα. The principle of the algorithm is to increase the value of the proximity parameterα when updating of the dual
bound fails. If the dual bound is updated, we reset the value of α to a small value in order to search for another quick update
of the dual bound. Let T and Ω denote some given positive numbers. α is increased gradually up to Ω when the best dual
value is not updated during the last T iterations. If the best dual is updated, we reset α to 1, and the procedure is repeated.
See Algorithm 2 for details. Note that there are two parameters here, T controls how fast the value of α will increase, while
Ω restricts themaximum value of α. Fig. 3(a) demonstrates the change in α for the proximity adjusted Chebyshev algorithm
with T = 10 and Ω = 10.

Algorithm 2 Column generation based on the Proximity Adjusted Chebyshev center
1: procedure PAChebyshevCenterColGen
2: Z̃ ← 0 ◃ Or any valid dual bound
3: n← 0
4: α← 1
5: repeat
6: Solve the restricted Chebyshev primal master problem
7: (λ′, y′, z ′) and (π ′, π ′0)← the optimal primal and dual solutions
8: if the optimal value

∑
i∈K cT xiλ′i − Z̃z ′ is greater than εz ′ then ◃ Equivalently r > εz ′

9: Solve the column generation subproblem using (π ′, π ′0) as dual solution
10: if new column is identified with x′ then ◃ Reduced cost is negative
11: Add new column (Ax′, 1, ‖(Ax′, 1)‖) to the problem
12: n← n+ 1 ◃ Increase the non-dual-update iteration number.
13: else
14: Z̃ ← bTπ ′ + π ′0 ◃ Update the best dual bound
15: n← 0
16: α← 1 ◃ Reset value of α.
17: end if
18: end if
19: if n > T then
20: α← min{2α, Ω} ◃ Increase α by two times at every T non-dual-update iteration.
21: n← 0
22: end if
23: until r ≤ εz ′
24: end procedure

Fig. 3(b) shows a typical example of the changes that occur in the dual bound in the algorithmwhen various parameter are
used values for the vehicle routing problem (VRP) C101 (the detailed description of this problem can be found in Section 4).
It is clearly shown that small α may lead to frequent updates of the dual bound.

3.2. Stabilized Chebyshev center algorithm

The Chebyshev center method can be modified to use the stabilization technique. We call this combined algorithm the
stabilized Chebyshev algorithm. In the stabilized Chebyshev algorithm, the Chebyshev center is stabilized by using a linear
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(a) Change of α for the proximity adjusted Chebyshev algorithm
with T = 10 and Ω = 10.

(b) Updates of dual bound for the different algorithmic parameters.

Fig. 3. Behavior of the algorithm for VRP problem C101.

penalty function with the penalty parameter ϵ. For a given penalty parameter ϵ and a stabilization center (Π̃, Π̃0), the
primal master problem of the stabilized Chebyshev algorithm is stated as follows:

min
−
i∈K

cT xiλi − Z̃z +
−

j=1,...,m

Π̃j(δ
+

j − δ−j )+ Π̃0(δ
+

0 − δ−0 ) (31)

subject to
−
i∈K

Axiλi − y− bT z + δ+ − δ− ≥ 0, (32)−
i∈K

λi − z + δ+0 − δ−0 = 0, (33)

−
i∈K

‖(Axi, 1)‖∗λi +

m−
j=1

yj + ‖(b, 1)‖∗z ≥ 1, (34)

λi ≥ 0, ∀i ∈ K , (35)
yj ≥ 0, ∀j = 1, . . . ,m, (36)

z ≥ 0, (37)

δ+j ≤ ϵ, δ−j ≤ ϵ, ∀j = 1, . . . ,m, (38)

δ+0 ≤ ϵ, δ−0 ≤ ϵ. (39)

Note that the above problem is reduced to the Chebyshev primal master problem when ϵ = 0. For a given ϵ, we solve
the above problem by using the procedure ChebyshevCenterColGen (or PAChebyshevCenterColGen). We then reduce the
value of ϵ and solve the above problem again by taking the last dual solution of the previous problem as the initial dual
bound solution and the stabilization center of the new problem to be solved. The algorithm is terminated when ϵ = 0.

4. Computational experiments

In this section, we present the computational results which demonstrate the effectiveness of the Chebyshev center based
column generation algorithm. Since our aim is to accelerate the column generation procedure, no effortsweremade to refine
the branch-and-price procedure for obtaining the optimal integer solutions, i.e., we only solved the problem at the root node
of the branch-and-price search tree. The experiments were conducted on three well-known problem classes, namely, the
binpacking problem, the vehicle routing problem with time windows (VRPTW), and the generalized assignment problem
(GAP). We solved the test problems with six different column generation algorithms as follows:

• Chebyshev center based column generation (CG) (Chebyshev) with α = 1.
• Proximity adjusted Chebyshev center based CG (PA Chebyshev) with T = 10 and Ω = 100.
• Stabilized column generation (Stabilization).
• Standard column generation (Kelley).
• Stabilized Chebyshev algorithm (Chebyshev+Sta.).
• Stabilized proximity adjusted Chebyshev algorithm (PA Chebyshev+Sta.) with T = 10 and Ω = 100.
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The performances of the algorithms are compared by the performance profile graphs proposed in [13]. For a set of
algorithms S and a set of problems P , we define the performance ratio

rp,s =
tp,s

min
s∈S
{tp,s}

, for all p ∈ P, (40)

where tp,s is any performance measure (e.g., iteration number, time) of algorithm s ∈ S for problem p ∈ P . We, then, define
ρs(τ ) as the probability for algorithm s ∈ S that a performance ratio is within a factor τ of the best possible ratio:

ρs(τ ) =
|{p ∈ P | rp,s ≤ τ }|

|P|
, (41)

where | · | represents the number of elements of a set. For any given τ ≥ 1, algorithms having large ρs(τ ) are to be preferred;
specifically ρs(1) means the probability that the algorithm s will not be outperformed by the rest of the algorithms. A
performance profile graph is obtained by plotting the probability ρs(τ )with varying τ . In the column generation procedure,
the overall performance largely depends on the choice of the column generation subproblem, i.e., oracle. Here we report
the performance profile graphs for the test problems by using the iteration number as the performance measure because
the iteration number is closely related to the depth (goodness) of cuts, and independent of any specific algorithm (and the
implementation) of the oracle.

In the algorithms using the stabilization technique, (Stabilization, Chebyshev+Sta., and PA Chebyshev+Sta.),
the penalty coefficient ϵ was initially set to 0.1, and then sequentially updated to 0.01, 0.001, 0.0001, and 0. The convergence
tolerances for the Chebyshev algorithms, ε, and the reduced cost tolerances of the column generation subproblem were
10−4. We used the L1 norm in calculating the Chebyshev center. All computational tests presented here were performed on
an AMD X2 2.9 GHz PC with 4 GB RAM. The implementations of the algorithms were done with C# using CPLEX 10.1 as a
linear programming solver.

4.1. Binpacking problem

The binpacking problem is to minimize the number of bins of width L that are needed to pack all items i = 1, . . . , I of
widths w1, . . . , wI . The linear programming relaxation of the standard covering type Dantzig–Wolfe decomposition model
can be given as

(Binpacking Primal)
min

−
p∈P

xp

s.t.
−
p∈P

aipxp ≥ 1, ∀i = 1, . . . , I,

xp ≥ 0, ∀p ∈ P,



(Binpacking Dual)

max
I−

i=1

πi

s.t.
I−

i=1

aipπi ≤ 1, ∀p ∈ P,

πi ≥ 0, ∀i = 1, . . . , I,

where P is the set of possible packing patterns of a bin, i.e., a set of feasible solutions of
∑I

i=1 wiai ≤ L, ai ∈ {0, 1}, ∀i =
1, . . . , I . The coefficient aip is 1 if item i is packed by pattern p, 0 otherwise. The decision variable xp indicates the number
of bins using packing pattern p.

From the above dual problem, we can easily derive a feasible dual solution of π̃i = wi/L, i = 1, . . . , I by inspection. We
used this solution as an initial stabilization center for the stabilized column generation algorithm and as an initial best dual
solution for the Chebyshev center column generation algorithm. Let P ′ denote a subset of P . The Chebyshev primal master
problem can be formulated as follows:

(Binpacking Chebyshev Primal Master):

min
−
p∈P ′

xp −
I−

i=1

π̃iz

s.t.
−
p∈P ′

aipxp − yi − z ≥ 0, ∀i = 1, . . . , I,

−
p∈P ′
‖ap‖xp +

I−
i=1

yi + α‖1⃗‖z ≥ 1,

xp ≥ 0, ∀p ∈ P ′, yi ≥ 0, ∀i = 1, . . . , I, z ≥ 0,

where 1⃗ is an I dimensional vector of all ones and ap := (aip)Ii=1.
Note that the column generation subproblem is unchanged from the classical column generation. Let πi, ∀i = 1, . . . , I

denote the dual variables associated with the first inequalities of (Binpacking Chebyshev Primal Master). The column
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Table 1
Binpacking problem.

Prob Chebyshev PA Chebyshev Chebyshev+Sta. PA Chebyshev+Sta. Stabilization Kelley

#iter time (sub%) #iter time (sub%) #iter time (sub%) #iter time (sub%) #iter time (sub%) #iter time (sub%)

u120 373.1 0.4 (35.9%) 360.5 0.4 (32.4%) 201.8 0.3 (34.4%) 244.4 0.3 (35.7%) 329.8 0.4 (33.3%) 403.2 0.3 (31.0%)
u250 760.6 2.2 (31.5%) 727.1 2.4 (27.6%) 398.8 1.8 (31.8%) 576.6 1.9 (28.6%) 669.9 2.2 (33.9%) 834.6 1.7 (30.2%)
u500 1437.6 21.1 (52.0%) 1388.3 20.0 (51.9%) 797.1 14.8 (66.6%) 1154.1 17.0 (52.8%) 1222.5 15.7 (42.5%) 1584.0 10.0 (18.0%)
u1000 2792 1274.7 (92.6%) 2721 1271.2 (92.8%) 1614 824.4 (96.9%) 2303 873.7 (91.8%) 2346 175.0 (59.1%) 3073 82.6 (9.6%)
t60 268.6 0.3 (66.7%) 250.3 0.3 (66.7%) 100.9 0.1 (44.4%) 94.1 0.1 (42.9%) 99.8 0.1 (50.0%) 213.3 0.1 (50.0%)
t120 483.8 3.2 (87.9%) 445.9 3.2 (89.1%) 177.5 0.4 (52.3%) 200.7 0.5 (68.8%) 225.2 0.7 (58.0%) 405.0 0.5 (51.9%)
t249 819.8 15.2 (86.9%) 741.7 14.9 (85.6%) 370.6 2.3 (48.9%) 494.3 3.5 (63.4%) 487.5 11.2 (84.8%) 809.8 3.2 (52.4%)
t501 1564.9 20.4 (30.1%) 1392.0 16.6 (31.0%) 757.6 14.6 (66.8%) 964.3 17.9 (61.7%) 1010.8 393.6 (98.0%) 1594.0 18.0 (39.6%)

generation subproblem corresponds to the 0–1 knapsack problem, which finds a profitable packing pattern:

(Binpacking Oracle):

max
I−

i=1

πiai

s.t.
I−

i=1

wiai ≤ L,

ai ∈ {0, 1}, ∀i = 1, . . . , I.

4.1.1. Test instances
The test problems were taken from the OR-library [3], which has two classes of instances: The first class, u-problems,

consists of problems with L = 150 and the widths of items are uniformly distributed in [20, 100]. The second class,
t-problems, are triplets, which means that triples of items are to be packed exactly into bins of L = 100. The problem set
includes problems for different numbers of items: 120, 250, 500, and 1000 for the u-class problems, and 60, 120, 249, and 501
for the t-class problems. There are 20 problems for each problem class with a given number of items. Therefore the results
were averaged over 20 problems for each problem type (except for some problems in u1000 which could not be solved in
the 1 h time limit.) To solve the knapsack subproblem, we used Horowitz and Sahni’s branch and bound algorithm [25].

4.1.2. Comparisons with other algorithms
Table 1 reports the computational results of the six different algorithms for the binpacking problems. The headings

#iter, time, and sub% stand for the number of iterations, total cpu time (in seconds) spent in the column generation
procedure, and the percentage of spent time in solving the (knapsack) subproblem, respectively. The bold numbers represent
the best performance in terms of the iteration number. Fig. 4 shows the performance profile graph for the binpacking
problems. The PA Chebyshev algorithm consistently performs better than the Chebyshev algorithm, while Kelley’s
algorithm outperforms the Chebyshev algorithm when τ > 2, which implies that there are some problem instances the
Chebyshev algorithm performs very poorly. The Chebyshev+Sta. algorithm can clearly be seen to have the largest
probability that it will perform the best of all six algorithms for every range of τ . An interesting observation is that the
Chebyshev+Sta. algorithm performs better than the PA Chebyshev+Sta. algorithm. This behavior is understandable
if we note that adjusting the proximity parameter α may cancel the stabilization effect. In other words, we want to move
the Chebyshev center by adjusting α, so we may lose the stabilization effect on the dual solution.

4.2. VRP with time windows

The VRPTW is to visit a given set of customers I exactly once with available vehicles while taking into account the
capacities of the vehicles. The objective is to minimize the total traveling distances and each customer’s time window
should be observed when a vehicle visits the customer. Let R denote the set of all feasible routes that satisfy the customers’
time windows and vehicle capacity. Any route of a vehicle should start from and end at the depot, and the problem allows
the vehicle to wait at any customer location until service is possible. The linear programming relaxation of the standard
Dantzig–Wolfe decomposition model can be stated as

(VRPTW Primal)
min

−
r∈R

crxr

s.t.
−
r∈R

δirxr ≥ 1, ∀i ∈ I,

xr ≥ 0, ∀r ∈ R,



(VRPTW Dual)
max

−
i∈I

πi

s.t.
−
i∈I

δirπi ≤ cr , ∀r ∈ R,

πi ≥ 0, ∀i ∈ I,
where cr is the distance of route r ∈ R. The indicator δir is the number of stops at customer i in route r . Note that our
definition of a route permits cycles in the route as long as the timewindows and capacity constraints are satisfied; therefore
a routemay visit the same customermultiple times. Provided that the triangle inequalities are satisfied, it can be shown that
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Fig. 4. Performance profile graph for the binpacking problems.

there exists an integer optimal solution without a cycle [10]. The decision variable xr determines how many times route r
should be operated, and it is easily seen that xr ≤ 1 at the optimality. From the above dual problem, a feasible dual solution
of π̃i = min(j,i)∈θi cij is easily derived by inspection, where θi is the set of edges incident to node i. We used π̃i as an initial
stabilization center for the stabilized column generation algorithm, and an initial best dual solution for the Chebyshev center
column generation algorithm. Let R′ denote a subset of R. Then, the Chebyshev primal master problem can be formulated as
follows:

(VRPTW Chebyshev Primal Master):

min
−
r∈R′

crxr −
−
i∈I

π̃iz

s.t.
−
r∈R′

δirxr − yi − z ≥ 0, ∀i ∈ I,−
r∈R′
‖δr‖xr +

−
i∈I

yi + α‖1⃗‖z ≥ 1,

xr ≥ 0, ∀r ∈ R′, yi ≥ 0, ∀i ∈ I, z ≥ 0,

where 1⃗ is a |I| dimensional vector of all ones.
The column generation subproblem corresponds to the shortest path problem with resource constraints (SPPRC) [21],

which finds a profitable route such that
∑

i∈I δirπi > cr . This problem can be solved by the labeling algorithm, as proposed
by Irnich and Desaulniers [21] and Dror [14].

4.2.1. Test instances
The test problems shown here are taken from the well-known Solomon problems [32] and classified into three classes

of problems: whose in which the customers are distributed randomly over the square (R class) or, alternatively, clustered
(C class), and those of consisting of a combination of randomly placed and clustered customers (RC class). The number of
customers is 100 in all cases. Problems which could not be solved within the 1-hour time limit are excluded.

4.2.2. Comparisons with other algorithms
Table 2 compares the performances of the column generation methods, and Fig. 5 shows the performance profile graph

on the VRPs. Note that we used a logarithm scale for the horizontal axis because some of the performance ratios are
greater than 10. Again, the Chebyshev+Sta. algorithm performs the best, and the Stabilization algorithm performs
better than Kelley’s algorithm for every type of problem. However, the performances of the other algorithms vary
considerably depending on the type of problem. In particular, the Chebyshev algorithm seems to be more effective than
the PA Chebyshev algorithm for the C class problems, while the Chebyshev algorithm and the PA Chebyshev algorithm
showcomparable performances for the R andRC class problems.Kelley’s algorithmcan be seen to performbetter than the
Chebyshev algorithm (or the PA Chebyshev algorithm) for the R and RC class problems. This behaviormay be interpreted
as follows. In the C class problems, the customers are clustered, so theremay bemany vehicle routes of similar distances. It is
fairly well known that the standard column generation method simply collapses for highly degenerate problems, i.e., it may
produce many similar columns without any improvement of the objective value. In other words, as there are many nearly
equivalent extreme points in the dual polyhedron, any nonextreme point based method such as the Chebyshev algorithm
may be more effective. Another possible explanation of this behavior is that the extreme dual optimal solutions for the
customers, πi, have many uneven values, thereby yielding routes serving only a portion of the clustered customers. As the
preferred route is to serve clustered customers by the same vehicle, it may be advantageous if the dual solutions have even
(nonzero) values for the clustered customers, which is achievable by centering or stabilizing the dual solution.
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Fig. 5. Performance profile graph for the VRP problems.

4.3. Generalized assignment problem

The generalized assignment problem (GAP) is to obtain a minimum cost assignment plan of a set of jobs J to a set of
agents I , while taking the capacities of the agents into account. Every job should be assigned to exactly one agent. Job j ∈ J
consumes capacity aij and incurs cost cij when assigned to agent i ∈ I , whose capacity is bi. Let Ki be the set of all possible
assignment patterns for agent i. The linear programming relaxation of the standard Dantzig–Wolfe decomposition model
can be addressed as

(GAP Primal)
min

−
i∈I

−
k∈K

c ikx
i
k,

s.t.
−
i∈I

−
k∈Ki

δ
j
kx

i
k ≥ 1, j ∈ J,

−

−
k∈Ki

xik ≥ −1, ∀i ∈ I,

xik ≥ 0, ∀k ∈ Ki, i ∈ I,



(GAP Dual)
max

−
j∈J

πj −
−
i∈I

φi,

s.t.
−
j∈J

δ
j
kπj − φi ≤ c ik, ∀k ∈ Ki, i ∈ I,

πj ≥ 0, ∀j ∈ J,
φi ≥ 0, ∀i ∈ I,

where δ
j
k is 1 if job j is in assignment pattern k ∈ Ki for agent i, and c ik is defined as

∑
j∈J cijδ

j
k for k ∈ Ki and i ∈ I . By

inspection, we set the initial dual solution as π̃j = mini∈I cij, ∀j ∈ J and φ̃i = 0, ∀i ∈ I . Let K ′i denote a restricted set of Ki
for agent i. Then, the Chebyshev primal master problem can be formulated as follows:

(GAP Chebyshev Primal Master):

min
−
i∈I

−
k∈K ′i

c ikx
i
k −

−
j∈J

π̃j −
−
i∈I

φ̃i


z

s.t.
−
i∈I

−
k∈K ′i

δ
j
kx

i
k − uj − z ≥ 0, ∀j ∈ J,

−

−
k∈K ′i

xik − vi + z ≥ 0, ∀i ∈ I,

−
i∈I

−
k∈K ′i

‖(δk,−1)‖xik +
−
j∈J

uj +
−
i∈I

vi + α‖1⃗‖z ≥ 1,

xik ≥ 0, ∀i ∈ I, k ∈ K ′i ,
uj ≥ 0, ∀j ∈ I, vi ≥ 0, ∀i ∈ I, z ≥ 0,

where 1⃗ is a |I| + |J| dimensional vector of all ones, and δk := (δ
j
k)j∈J .

The column generation subproblem corresponds to the 0–1 knapsack problem, which finds a beneficial assignment
pattern such that

∑
j∈J(πj − cij)δj > φi for each agent i ∈ I:

(GAP Oracle): max
−
j∈J

(πj − cij)δj, s.t.
−
j∈J

aijδj ≤ bi, δj ∈ {0, 1}, ∀j ∈ J.

At any columngeneration iteration,we solveGAPoracles for all agents, and all assignment patternswith
∑

j∈J(πj−cij)δj >
φi are added to the master problem.



Author's personal copy

2264 C. Lee, S. Park / Discrete Applied Mathematics 159 (2011) 2251–2265

Table 3
Generalized assignment problem.

Prob Chebyshev PA Chebyshev Chebyshev+Sta. PA Chebyshev+Sta. Stabilization Kelley’s
#iter time (sub%) #iter time (sub%) #iter time (sub%) #iter time (sub%) #iter time (sub%) #iter time (sub%)

d05100 985 34.6 (57.9%) 861 38.4 (56.3%) 729 23.9 (54.7%) 791 34.7 (60.6%) 712 16.1 (58.9%) 825 26.4 (58.8%)
d10100 233 3.7 (50.9%) 203 3.6 (53.3%) 216 2.4 (39.1%) 229 4.2 (46.0%) 302 4.3 (49.1%) 267 3.8 (50.3%)
d10200 1104 350.6 (49.9%) 1022 518.9 (37.7%) 683 67.5 (33.5%) 1013 483.5 (23.3%) 916 130.5 (46.2%) 1114 225.1 (45.8%)
d20100 126 1.4 (44.6%) 124 1.5 (43.5%) 154 1.6 (39.9%) 136 2.0 (47.3%) 176 2.0 (57.4%) 162 1.8 (54.9%)
d20200 328 34.7 (39.6%) 263 35.5 (43.0%) 396 38.5 (24.8%) 282 35.6 (38.9%) 445 44.2 (33.1%) 411 42.9 (33.6%)
e05100 709 19.8 (55.3%) 675 26.8 (49.8%) 692 15.3 (46.5%) 681 22.8 (57.3%) 617 12.7 (59.0%) 710 21.2 (57.1%)
e10100 276 4.1 (49.9%) 236 5.2 (41.8%) 347 4.6 (44.5%) 252 4.9 (49.0%) 319 4.5 (48.5%) 271 3.5 (48.1%)
e10200 1338 469.7 (39.0%) 1173 734.0 (28.3%) 1260 407.4 (30.2%) 1149 671.8 (24.9%) 950 132.8 (55.0%) 1267 247.9 (47.3%)
e20100 151 1.6 (52.1%) 126 1.8 (52.0%) 227 2.7 (43.5%) 151 2.6 (51.9%) 189 2.2 (53.9%) 168 1.7 (56.1%)
e20200 377 68.1 (61.1%) 292 66.6 (63.3%) 507 65.7 (39.1%) 299 51.9 (48.4%) 495 45.8 (35.6%) 439 37.7 (32.5%)

Fig. 6. Performance profile graph for the GAP problems.

4.3.1. Test instances
The test problems are taken from the OR-library [3], which contains five classes of problem instances. In our trials we

used type D and E instances. Each problem’s name represents the type of the problem, the number of agents, and the number
of jobs. For example, d05100 stands for the problem of type D, which has five agents and 100 jobs to be assigned. To solve
the knapsack subproblem, we used Horowitz and Sahni’s branch and bound algorithm [25].

4.3.2. Comparisons with other algorithms
The performances of the column generation methods and the performance profile graph for the GAP problems are

shown in Table 3 and Fig. 6, respectively. The PA Chebyshev algorithm outperforms the other five algorithms, while
the performance gap is not apparent compared with the results of the binpacking and the VRP problems. The stabilized
Chebyshev algorithms show inferior performances compared with the pure Chebyshev algorithms, which may be due to
the relatively poorer performance of the Stabilization algorithm.

5. Conclusion

The column generation procedure based on the simplex algorithm often shows desperately slow convergence. In this
paper, we propose the use of the Chebyshev center based column generation scheme to accelerate convergence. The
Chebyshev center is the deepest point inside the polyhedron, and it can be obtained by reformulating the dual formulation
of the master problem. The motivation for developing this approach is to prevent the so-called zig–zag behavior of dual
solutions by being able to follow some center points of the dual polyhedron. To this end, we propose the proximity
adjusted Chebyshev center algorithm in which the distance between the Chebyshev center and the dual bound inequality is
dynamically adjusted, as this consistently showed better performance than the pure Chebyshev center algorithm. We also
demonstrate here that the proposed algorithm can be used in a combination with the stabilization algorithm (stabilized
Chebyshev algorithm).

We conducted computational experiments on the binpacking problem, the vehicle routing problem, and the generalized
assignment problem. Our comparisons between six different column generation algorithms showed that the proposed
algorithm can accelerate the column generation procedure.
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One interesting observation is that on occasion the number of iterations and computational time do not appear to be
correlated. When the times spent on solving the oracle problems during the column generation algorithm are more closely
examined, they can be seen to fluctuate greatly at a number of specific iterations, indicating that the overall computational
time may be highly dependent on the algorithm and the implementation of the oracle. It is, however, not easy to determine
which conditions cause the oracle to perform poorly. Briant et al. [9] observed a similar behavior in their comparison of
the classical column generation and the stabilized technique. The authors cautiously suggested that solving the oracles for
the stabilized techniques may be more difficult due to the many nonzeros in the dual solutions. They also proposed that a
warm-staring of the oraclesmight be advantageous because the dual solutions are supposedly close together in the stabilized
techniques.

To use the proximity adjusted Chebyshev algorithm, one has to determine the values of two important parameters
(T and Ω). It is barely imaginable that any single combination of parameter values performs best for any type of problem.
It is also not easy to determine the best parameter values in advance since whose may depend on the specific properties of
the problem to be solved. This difficulty in choosing the proper parameter values (defining of the penalty function) is also
shared with the stabilization algorithms. We note that the choice of norm did not make a significant differences, but with
the aim of maintaining numerical stability, the L1 norm would appear to be a good choice.
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